翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

symmetrization : ウィキペディア英語版
symmetrization

In mathematics, symmetrization is a process that converts any function in ''n'' variables to a symmetric function in ''n'' variables.
Conversely, anti-symmetrization converts any function in ''n'' variables into an antisymmetric function.
==Two variables==
Let S be a set and A an abelian group. Given a map \alpha\colon S \times S \to A, \alpha is termed a symmetric map if \alpha(s,t) = \alpha(t,s) for all s,t \in S.
The symmetrization of a map \alpha \colon S \times S \to A is the map (x,y) \mapsto \alpha(x,y) + \alpha(y,x).
Conversely, the anti-symmetrization or skew-symmetrization of a map \alpha \colon S \times S \to A is the map (x,y) \mapsto \alpha(x,y) - \alpha(y,x).
The sum of the symmetrization and the anti-symmetrization of a map ''α'' is 2''α''.
Thus, away from 2, meaning if 2 is invertible, such as for the real numbers, one can divide by 2 and express every function as a sum of a symmetric function and an anti-symmetric function.
The symmetrization of a symmetric map is its double, while the symmetrization of an alternating map is zero; similarly, the anti-symmetrization of a symmetric map is zero, while the anti-symmetrization of an anti-symmetric map is its double.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「symmetrization」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.