|
Tonicity is a measure of the effective osmotic pressure gradient (as defined by the water potential of the two solutions) of two solutions separated by a semipermeable membrane. In other words, tonicity is the relative concentration of solutions that determine the direction and extent of diffusion. It is commonly used when describing the response of cells immersed in an external solution. Unlike osmotic pressure, tonicity is influenced only by solutes that cannot cross the membrane, as only these exert an effective osmotic pressure. Solutes able to freely cross the membrane do not affect tonicity because they will always be in equal concentrations on both sides of the membrane. There are three classifications of tonicity that one solution can have relative to another. The three are ''hypertonic'', ''hypotonic'', and ''isotonic''. == Hypertonicity == Hypertonic refers to a greater concentration. In biology, a hypertonic solution is one with a higher concentration of solutes outside the cell than inside the cell. When a cell is immersed into a hypertonic solution, the tendency is for water to flow out of the cell in order to balance the concentration of the solutes. Likewise, the cytosol of the cell is conversely categorized as hypotonic, opposite of the outer solution. When plant cells are in a hypertonic solution, the flexible cell membrane pulls away from the rigid cell wall, but remains joined to the cell wall at points called plasmodesmata. The cell takes on the appearance of a pincushion, and the plasmodesmata almost cease to function because they become constricted: a condition known as plasmolysis. In plant cells the terms isotonic, hypotonic and hypertonic cannot strictly be used accurately because the pressure exerted by the cell wall significantly affects the osmotic equilibrium point. Some organisms have evolved intricate methods of circumventing hypertonicity. For example, saltwater is hypertonic to the fish that live in it. They need a large surface area in their gills in contact with seawater for gas exchange, thus they lose water osmotically to the sea from gill cells. They respond to the loss by drinking large amounts of saltwater, and actively excreting the excess salt. This process is called osmoregulation. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「tonicity」の詳細全文を読む スポンサード リンク
|