翻訳と辞書
Words near each other
・ Γ-convergence
・ Δ-hyperbolic space
・ Δ-opioid receptor
・ Δ13C
・ Δ15N
・ Δ18O
・ ΔF508
・ ΔP
・ ΔT
・ ΔT (disambiguation)
・ Ε-net
・ Ε-net (computational geometry)
・ Ε-quadratic form
・ Η set
・ Θ (set theory)
Θ10
・ Κ-opioid receptor
・ Κατά τον δαίμονα εαυτού
・ Λ-ring
・ ΛProlog
・ Μ operator
・ Μ(I) rheology
・ Μ-law algorithm
・ Μ-opioid receptor
・ Μ-recursive function
・ ΜC++
・ ΜClinux
・ ΜF
・ ΜFluids@Home
・ ΜTorrent


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Θ10 : ウィキペディア英語版
Θ10

In representation theory, a branch of mathematics, θ10 is a cuspidal unipotent complex irreducible representation of the symplectic group Sp4 over a finite, local, or global field.
introduced θ10 for the symplectic group Sp4(F''q'') over a finite field F''q'' of order ''q'', and showed that in this case it is
''q''(''q'' – 1)2/2-dimensional. The subscript 10 in θ10 is a historical accident that has stuck: Srinivasan arbitrarily named some of the characters of Sp4(F''q'') as θ1, θ2, ..., θ13, and the tenth one in her list happens to be the cuspidal unipotent character.
θ10 is the only cuspidal unipotent representation of Sp4(F''q''). It is the simplest example of a cuspidal unipotent representation of a reductive group, and also the simplest example of a degenerate representation (one without a Whittaker model).
General linear groups have no cuspidal unipotent representations and no degenerate representations, so θ10 exhibits properties of general reductive groups that do not occur for general linear groups.
used the representations θ10 over local and global fields in their construction of counterexamples to the generalized Ramanujan conjecture for the symplectic group. described the representation θ10 of the Lie group Sp4(R) over the local field R in detail.
==References==

*
*
*.
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Θ10」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.