翻訳と辞書 |
category A category K is a collection of objects, obj(K), and a collection of {morphisms} (or "{arrows}"), mor(K) such that 1. Each morphism f has a "typing" on a pair of objects A, B written f:A->B. This is read 'f is a morphism from A to B'. A is the "source" or "domain" of f and B is its "target" or "{co-domain}". 2. There is a partial function on morphisms called composition and denoted by an infix ring symbol, o. We may form the "composite" g o f : A -> C if we have g:B->C and f:A->B. 3. This composition is associative: h o (g o f) = (h o g) o f. 4. Each object A has an identity morphism id_A:A->A associated with it. This is the identity under composition, shown by the equations id__B o f = f = f o id__A.
In general, the morphisms between two objects need not form a set (to avoid problems with Russell's paradox). An example of a category is the collection of sets where the objects are sets and the morphisms are functions. Sometimes the composition ring
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|