|
For instance, the permutations of (1,2,3) are (1,2,3) (2,3,1) (3,1,2) (3,2,1) (1,3,2) (2,1,3). Permutations form one of the canonical examples of a "group" - they can be composed and you can find an inverse permutation that reverses the action of any given permutation. The number of permutations of r things taken from a set of n is n P r = n! / (n-r)! where "n P r" is usually written with n and r as subscripts and n! is the factorial of n. What the football pools call a "permutation" is not a permutation but a combination - the order does not matter. 2. A bijection for which the domain and range are the same set and so f(f'(x)) = f'(f(x)) = x. (2001-05-10) スポンサード リンク
|