|
ID3〔Quinlan, J. Ross. "Induction of decision trees." Machine learning 1.1 (1986): 81-106.〕は汎用目的で設計された教師あり学習アルゴリズムの一種である。その学習効率の高さと出力が決定的であることなどから、エキスパートシステムの知識獲得部分にしばしば用いられる。 == 概要 == ID3(Iterative Dichotomiser 3)は1979年にジョン・ロス・キンラン(John Ross Quinlan)により提案された。その学習方法はオッカムの剃刀の原理に基づいている。すなわち最低限の仮説による事象の決定を行う。出力は決定木の形で表される。 この方法は各独立変数に対し変数の値を決定した場合における平均情報量の期待値を求め、その中で最大のものを選びそれを木のノードにする操作を再帰的に行うことで実装される。 学習効率が良く、多数の例題から学習することが出来るが、「例題を一括に処理する必要があり学習結果の逐次的な改善が行えない」、「入力変数が連続値を取る場合は利用できない」などといった問題点も指摘されている。 提案者のキンランは ID3 の拡張としてC4.5と呼ばれるアルゴリズムを新たに提案しており、これは入力にあるノイズに対応することができる〔Quinlan, J. Ross. C4. 5: programs for machine learning. Elsevier, 2014.〕。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ID3」の詳細全文を読む スポンサード リンク
|