|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 量 : [りょう] 1. amount 2. volume 3. portion (of food) 4. basal metabolic rate, quantity ・ 量子 : [りょうし] (n) quantum ・ 量子力学 : [りょうしりきがく] (n) quantum mechanics ・ 子 : [こ, ね] (n) first sign of Chinese zodiac (The Rat, 11p.m.-1a.m., north, November) ・ 力 : [ちから, りょく] 1. (n-suf) strength 2. power ・ 力学 : [りきがく] 【名詞】 1. mechanics 2. dynamics ・ 学 : [がく] 【名詞】 1. learning 2. scholarship 3. erudition 4. knowledge
p-進量子力学(p-adic quantum mechanics)は、基礎物理学の性質を理解しようとする比較的新しいアプローチであり、p-進解析の量子力学への応用である。p-進数は、1899年頃、ドイツの数学者のクルト・ヘンゼル(Kurt Hensel)により発見された非直感的な数理系であり、1930年代に、クロード・シュヴァレー(Claude Chevalley)とアンドレ・ヴェイユ(André Weil)により、密接に関連するアデール(adele)とイデール(idele)が導入された。彼らの研究は、現在では、数学の主要な分野の中へ反映されている。p-進解析は物理学分野へ適用されることがあるが、ロシアの数学者、ヴォロヴィッチ(Volovich)が1987年に重要な主題として取り上げる〔I.V.Volovich, ''Number theory as the ultimate theory'', CERN preprint, CERN-TH.4791/87〕までは、そのようなことはなかった。 現在では、国際的な雑誌で多くの研究論文がこの主題を扱っている。〔V. S. Vladimirov, I.V. Volovich, and E.I. Zelenov ''P-adic Analyisis and Mathematical Physics'', (World Scientific, Singapore 1994)〕〔L. Brekke and P. G. O. Freund, ''P-adic numbers in physics'', Phys. Rep. 233, 1-66(1993)〕 本記事では、数学的な概念をレヴューとして、この問題の入門的解説を行う。シュレディンガー方程式に似た方程式からより研究のアイデアを得るというときの、この問題の現代の話題を考える。最後に、いくかの詳細な例を挙げる。 ==始めに== 多くの自然の研究は、プランク長で発生することへの疑問を扱う。そこでは、通常は現実に存在するようには思えないことが起きるが、ある意味では、実験装置や器具では識別できなくなり、そのような実験はできないとも言える。量子力学でのヒルベルト空間の定式化と宇宙の広大さを統一することは、手ごわい課題と言える。大半の研究者は、プランク長よりも小さな(領域の)幾何学やトポロジーは、通常の幾何学やトポロジーには関係する必要がないと考えた。一方、まさに花の色が原子から出現するように、通常の幾何学やトポロジーがプランク長よりも小さな領域の幾何学やトポロジーから出現すると考える者もいる。現在、この問題への多くのフレームワークが提案されていて、p-進解析はその中でいくつかの完成されたものを持つ妥当な候補である。
|