|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 連 : [むらじ, れん] 【名詞】 1. party 2. company 3. group ・ 連続 : [れんぞく] 1. (n,vs) serial 2. consecutive 3. continuity 4. occurring in succession 5. continuing ・ 補正 : [ほせい] 1. (n,vs) correction ・ 正 : [ただし, せい, しょう] 【名詞】 1. (logical) true 2. regular ・ 正に : [まさに] 1. (adv) correctly 2. surely ・ 伴 : [とも] 1. (n,vs) companion 2. follower ・ 伴う : [ともなう] 1. (v5u) to accompany 2. to bring with 3. to be accompanied by 4. to be involved in 5. to be consequent upon ・ 得 : [とく] 1. (adj-na,n,vs) profit 2. gain 3. interest ・ 得点 : [とくてん] 1. (n,vs) score 2. points made 3. marks obtained 4. runs ・ 区 : [く] 【名詞】 1. ward 2. district 3. section ・ 区間 : [くかん] 1. (n,n-suf) section (of track, etc) 2. segment 3. dimension ・ 間 : [けん, ま] 【名詞】 1. space 2. room 3. time 4. pause
ウィルソンの区間は正規近似区間の改良型である(実際の範囲確率は額面の値に近い)。エドウィン・ビドウェル・ウィルソン (1927)によって最初に開発された〔 〕。 : この区間は極端な確率と標本数の少ない試行に対しても良い特性を持っている。 これらの特性は二項分布モデルから派生したものから獲得された。二項集団の確率を、その分布が標準偏差の正規分布で近似される場合を考える。しかしながら、観察される値の真の数値の分布は二項分布ではない。むしろ、観測されるは、下限の境界がと等しい区間の誤差を持ち、逆もしかりである〔。 ウィルソン区間は2つのカテゴリーからなるピアソンのカイ二乗検定からも求めることができる。 : 上の式をについて解くことによってウィルソン区間を求めることができる。 不等式の中間における検定は得点検定(英語)と呼ばれるので、ウィルソン区間はしばしばウィルソンの得点区間と呼ばれる。 ウィルソン区間の中心は : と の加重平均として示される。は標本数が増すに連れて大きく加重される。95%区間については、ウィルソン区間はの代わりにを用いた正規近似区間とほとんど同一である。 == ウィルソンの連続性修正を伴う得点区間 == ウィルソン区間は''最小の''範囲確率を名目値と整合させるために、連続性補正を用いて調整されることがある。 ウィルソン区間がピアソンのカイ二乗検定によく似ているように、連続性補正を伴うウィルソン区間はイェイツの連続性補正と同等のものである。 次の連続性補正を伴うウィルソンの得点区間の上限と下限を与える式はニューカム(1998)のものをもとに作られたものである〔。 : : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ウィルソンの連続性補正に伴う得点区間」の詳細全文を読む スポンサード リンク
|