|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 過程 : [かてい] 【名詞】 1. process ・ 程 : [ほど] 1. (n-adv,n) degree 2. extent 3. bounds 4. limit
数学におけるウィーナー過程(ウィーナーかてい、Wiener process)は、ノーバート・ウィーナーの名にちなんだ連続時間確率過程である。ウィーナー過程はブラウン運動の数理モデルであると考えられ、しばしばウィーナー過程自身をブラウン運動と呼ぶ。最もよく知られるレヴィ過程(右連続な定常独立増分確率過程)の一つであり、純粋数学、応用数学、経済学、物理学などにおいてしばしば現れる。 == 概要 == ウィーナー過程は純粋数学、応用数学の両方で重要な役割を演じる。純粋数学においては、ウィーナー過程は連続時間マルチンゲールの研究から生じ、より複雑な確率過程を記述する鍵となる確率過程である。それゆえに、確率解析、拡散過程、あるいはポテンシャル論においてさえも、極めて重要な役割を果たすのである。応用数学においては、ウィーナー過程はホワイト・ノイズの積分を表すものとして用いられ、それゆえに電子工学におけるノイズ、フィルタリング理論における機器誤差、制御理論における未知の力 (unknown force) などの数理モデルとして有用である。 ウィーナー過程の応用は数理科学の様々なところに現れる。物理学においては、ブラウン運動、流体に浮遊する微粒子の拡散、フォッカー-プランク方程式やランジュバン方程式を通した様々な拡散の様子などを研究するのに用いられる。こういった応用は量子力学における経路積分の厳密な定式化(ウィーナー積分として表されるシュレーディンガー方程式の解であるファインマン-カッツの公式によるもの)や宇宙論における永久インフレーションの研究の基礎を形成している。また、数理ファイナンスの理論、特にブラックとショールズのオプション価格モデルなどにも顕著に現われている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ウィーナー過程」の詳細全文を読む スポンサード リンク
|