翻訳と辞書
Words near each other
・ ウランバートル市
・ ウランバートル自然史博物館
・ ウランバートル駅
・ ウランフ
・ ウランブルガスイ山脈
・ ウランプハ砂漠
・ ウランホト
・ ウランホト市
・ ウラン・ウデ
・ ウラン・ウデ駅
ウラン・鉛年代測定法
・ ウラン・鉛法
・ ウラン協会
・ ウラン君とツヤ子先生のおしゃれキャッツ
・ ウラン崩壊系列
・ ウラン歩兵戦闘車
・ ウラン濃縮
・ ウラン県
・ ウラン系列
・ ウラン転換


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

ウラン・鉛年代測定法 : ミニ英和和英辞書
ウラン・鉛年代測定法[うらんなまりねんだいそくていほう]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

ラン : [らん]
 【名詞】 1. (1) run 2. (2) LAN (local area network) 3. (P), (n) (1) run/(2) LAN (local area network)
: [なまり]
 【名詞】 1. lead (the metal) 
: [ねん, とし]
  1. (n-adv,n) year 2. age 
年代 : [ねんだい]
 【名詞】 1. age 2. era 3. period 4. date 
: [よ, しろ]
 【名詞】 1. world 2. society 3. age 4. generation 
測定 : [そくてい]
  1. (n,vs) measurement 
測定法 : [そくていほう]
 (n) method of measurement
定法 : [じょうほう]
 【名詞】 1. established rule 2. usual method
: [ほう]
  1. (n,n-suf) Act (law: the X Act) 

ウラン・鉛年代測定法 : ウィキペディア日本語版
ウラン・鉛年代測定法[うらんなまりねんだいそくていほう]
ウラン・鉛年代測定法ウラン(U)を含んだ物質、鉱物について適用することができる放射年代測定法の一種。
== 概要 ==
ウラン・鉛年代測定法は天然に存在する放射性物質の1つであるウラン(U)の原子核崩壊して、それが最終的に(Pb)の原子核に変化することを利用することで、試料(分析対象物)がどのくらい昔に形成されたものであるかを調べる手法である。ウランは、核分裂などが起こった時などの特殊な場合を除いて、いずれ安定して存在可能なに変化する。放射性物質は、その核種によって半減期が決まっているので、試料が形成されたおおよその年代を知ることができる。なお、ウラン・鉛年代測定法は、ウラン-鉛法などと表記される場合もあるが、本稿ではウラン・鉛年代測定法という表記に統一する


ウランは全ての同位体が放射性核種であり、地球上では安定して存在し続けられない元素であることが知られている。このうちウラン・鉛年代測定法で重要なウランの同位体は、238U、235Uの二つである。238Uは合計8回のα崩壊と6回のベータ崩壊を繰り返して206Pbに壊変する

Romer, R.L. 2003. Alpha-recoil in U-Pb geochronology: Effective sample size matters. Contributions to Mineralogy and Petrology 145, (4): 481-491

(詳細はウラン系列の記事を参照)。また、235Uは合計7回のα崩壊と4回のβ崩壊を繰り返して207Pbに改変する

Romer, R.L. 2003. Alpha-recoil in U-Pb geochronology: Effective sample size matters. Contributions to Mineralogy and Petrology 145, (4): 481-491

(詳細はアクチニウム系列の記事を参照)。
238Uから206Pbまでの一連の崩壊に対応する半減期は約45億年、235Uから207Pbまでの一連の崩壊に対応する半減期は約7億年である。そのためウラン・鉛年代測定法は、だいたい100万年以上の時間が経過しているウランを含有した試料に用いられ(地球の歴史に等しい45億年以上が経過しているウランを含有した試料にも用いることができ)、238Uを用いた測定、235Uを用いた測定のそれぞれについて誤差0.1%〜1%程度の精度で年代測定が可能である

Parrish, Randall R.; Noble, Stephen R., 2003. "Zircon U-Th-Pb Geochronology by Isotope Dilution ? Thermal Ionization Mass Spectrometry (ID-TIMS). In Zircon (eds. J. Hanchar and P. Hoskin)." Reviews in Mineralogy and Geochemistry, Mineralogical Society of America. 183-213

地球の年齢がおおよそ45億歳であると人類が知ったのも、このウラン・鉛年代測定法の理論が確立されたからに他ならない(現在では他の方法も地球の年齢を調べるために使えるが、当時は、このウラン・鉛年代測定法を用いて調べるしかなかった。)
もしU,Pb系が完全な閉鎖系であり外部と物質のやり取りがないのであれば、ウラン系列とアクチニウム系列それぞれを用いて求めた放射年代は一致するはずである(一致年代、concordant age)。しかし実際にはUやPbが二次的な移動をすることが多く、二つの放射年代は一致しないことが多い(不一致年代、discordant age)。1956年にはジョージ・ウェザリルが、ウラン系列とアクチニウム系列を組み合わせて年代測定を行うコンコーディア法を提唱し、不一致年代を生じる試料に対しても年代測定を行うことができるようになった



ところで、238Uが206Pbに変化する時間の約10倍の時間、半減期約475億年でβ崩壊する天然の放射性物質87Rbも放射年代測定に利用される。87Rbは、1回β崩壊すると安定核種である87Srとなるため、この2つの核種の存在比を見ることで年代測定を行うのである。
(詳細は、を参照。)
このルビジウム・ストロンチウム年代測定法と、238Uが206Pbに変化するウラン系列とを組み合わせて(235Uが207Pbに変化するアクチニウム系列は用いずに)、年代測定を行う場合もある。ただいずれにしても、ウラン・鉛年代測定法での年代決定は、結局のところ、鉛の同位体の存在比を分析することによって行われる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「ウラン・鉛年代測定法」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.