翻訳と辞書
Words near each other
・ エネルギー憲章条約
・ エネルギー所要量
・ エネルギー指向型兵器
・ エネルギー換算係数
・ エネルギー政策
・ エネルギー政策基本法
・ エネルギー散逸
・ エネルギー断面
・ エネルギー最前線 ミライレポート
・ エネルギー植物
エネルギー機動性理論
・ エネルギー流
・ エネルギー流図
・ エネルギー流束
・ エネルギー消費
・ エネルギー消費量
・ エネルギー源
・ エネルギー準位
・ エネルギー演算子
・ エネルギー状態


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

エネルギー機動性理論 : ミニ英和和英辞書
エネルギー機動性理論[えねるぎーきどうせいりろん]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [ちょうおん]
 (n) long vowel mark (usually only used in katakana)
: [き, はた]
 (n) loom
機動 : [きどう]
 【名詞】 1. maneuver 2. manoeuvre 
機動性 : [きどうせい]
 【名詞】 1. cavalry 2. mobility 3. maneuverability
: [どう]
 【名詞】 1. motion 2. change 3. confusion 
: [り]
 【名詞】 1. reason 
理論 : [りろん]
 【名詞】 1. theory 
: [ろん]
 【名詞】 1. (1) argument 2. discussion 3. dispute 4. controversy 5. discourse 6. debate 7. (2) theory 8. doctrine 9. (3) essay 10. treatise 1 1. comment

エネルギー機動性理論 : ウィキペディア日本語版
エネルギー機動性理論[えねるぎーきどうせいりろん]

エネルギー機動性理論(; E-M理論)とは、元戦闘機操縦士のジョン・ボイド1962年に提唱した航空機戦闘機)の機動性に関する理論であり、空戦理論である。発表後には戦闘機開発に多大な影響を与えた。
== 概要 ==
ボイドが自身の空戦論(ボイドが作成した空軍初のジェット戦闘機用空戦マニュアル『航空攻撃研究』(Aerial Attack Study )でまとめられている)の理論付けの為にジョージア工科大学で知った熱力学からヒントを得て発案したもので、航空機の機動はエネルギー保存則に縛られるため、空戦においてエネルギーの変換(位置エネルギー ⇄ 運動エネルギー、等)と損失をコントロールし、攻撃位置を自機を有利に、相手側が不利になるように展開させる場合、その際に必要とされる航空機の機動能力(高度、速度、進行方向これらの任意の組合わせを素早く変化させる能力)は運動に変換することができる機体のエネルギーがどれだけあるのかで決まり、そのエネルギー比率はエンジン推力と抵抗の差を機体重量で割り速度を掛けた数値で求められるというものである。
水平飛行をしている機体は運動エネルギーを持ち、機体が高度を上げるには、その運動エネルギーを消費する。しかしそのエネルギーは消えてしまうわけではなく、位置エネルギーという形に変換され維持されることになる。そして、どれだけ高度を稼げるかは(位置エネルギーを持てるか)は、機体が持っている運動エネルギーによる。(厳密には全てが保存されるわけでなく、空気抵抗などのロスで少し減少する)そして位置エネルギーを一度確保してしまえば、パイロットはいつでも好きなときにそれを運動エネルギーに変換できる。例えば高度3000mに居る機体がより低い位置に居る高度2000mの機体を襲撃する際、急降下を行うだけで瞬時に高速に達し、空戦で優位に立つことができる。
これは位置エネルギーを運動エネルギーに変換することで速度を稼いだ、そして逆に機体に十分な運動エネルギーがあれば勢いよく上昇させる事でいつでも高度の位置エネルギーに変換できることを意味し、これがボイドの考えたエネルギー保存の法則を使った空戦の形だった。
またボイドは空戦においては素早さを追求しており、機動能力を構成する3大要素として重視したのは、どれだけ小さな面積・および体積の空間で方向転換が可能かを示す「旋回半径」、1秒間でどれだけ方向転換ができるかを示す「旋回率」、飛行経路に対し垂直方向に働く加速度を示す「G(加速度)」である。旋回半径の小さい、かつ旋回率の高い機動を行おうとすればその分のエネルギー損失が大きくなり、そしてこの理論におけるGは重力加速度と重量×運動加速度で増加し、そのGによってさらにエネルギー損失が増すことになり、その際には飛行高度が低下することで位置エネルギーが低下し、速度も低下することで運動エネルギーも低下するため素早さが無くなる。(ちなみに高度も速度も低下させずに行う水平旋回を維持旋回(Sustained turn/Sustained level turn)と呼び、ボイドのエネルギー機動論では重要な指標の一つとなり、この旋回はエネルギー0で釣り合っている基本状態、と見なされる)
そのため、次の機動に移る際には瞬時にエネルギーの回復を図る必要があり、エネルギー損失を可能な限り抑える必要がある。また重量に対してより大きな推力を持ち、より高速で飛べるほどエネルギー比率は大きくなる。
よって、E-M理論的に機動能力で優位に立てる機体はエネルギー損失を短時間で回復するために高い推力を持つエンジンを持ち、エネルギー損失を最低限に抑えるために軽量な機体を持つ物となる。
エネルギー比率の計算自体は上記のように単純な公式だが、実際の空中戦では機体が描く機動は単純な直線や円周ではなく、追跡曲線になるため、そこにかかるG(加速度)は、それこそ瞬間で常に変化する。さらに高度が変わると、今度はエンジン出力、推力の数字も変わってしまうため、理論の確認のための計算は膨大な量になってしまうため、ボイドが理論を完成させるためには当時最新の大型コンピュータを必要とした。
なおボイドのE-M理論では、発表当時は空気抵抗については省略されていたが、後に計算に加えられるようになっている。また、LERXなどの位置エネルギーの低下を抑えるようなデバイスが存在する場合は計算の修正を行う必要がある。
ボイドがE-M理論を提唱する以前から速度と高度を持った方が優位に立てることは経験的に知られており常識であったが、この理論では様々な機体のエンジン推力、抵抗、機体重量、速度といった数値を使うだけで様々な機動中における様々な機体の運動性能を見ることが出来るようになって有効な戦術が立てやすくなると共に、空戦に優位な機体の設計が行いやすくなった。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「エネルギー機動性理論」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.