|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 不 : [ふ] 1. (n-pref) un- 2. non- 3. negative prefix ・ 不変 : [ふへん] 1. (adj-na,n,adj-no) eternal 2. everlasting 3. unchangeable 4. immutable 5. immovable 6. constant 7. permanent 8. indestructible ・ 不変量 : [ふへんりょう] 【名詞】 1. constant 2. invariable ・ 変 : [へん] 1. (adj-na,n) change 2. incident 3. disturbance 4. strange 5. flat (music) 6. odd 7. peculiar 8. suspicious-looking 9. queer 10. eccentric 1 1. funny 1 ・ 量 : [りょう] 1. amount 2. volume 3. portion (of food) 4. basal metabolic rate, quantity
数学において、コンパクト多様体上の自己随伴(elliptic)微分作用素のエータ不変量(eta invariant)は、形式的には正の固有値の数から負の固有値の数を引いた数である。実践では、両方の数はしばしば無限大となり、ゼータ函数正規化を使い定義される。エータ不変量は により導入された。彼らはエータ不変量を使って、境界を持つ多様体のヒルツェブルフの符号定理を拡張した。 後に、彼らは、自己随伴作用素のエータ不変量を使い、コンパクトな奇数次元の滑らかな多様体のエータ不変量を定義した。 では、多様体の境界の(signature defect)が、エータ不変量として定義され、これを使い(Hilbert modular surface)のカスプのヒルツェブルフの符号欠損が(Shimizu L-function)の ''s'' = 0 あるいは 1 での値の項で表現されることを示した。 ==定義== 自己随伴作用素 ''A'' のエータ不変量は ''η''''A''(0) により与えられる。ここに ''η'' は、 : の解析接続であり、和は ''A'' の非零の固有値 λ 上を渡る。
|