|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ カー : [かー] 【名詞】 1. car 2. (n) car ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana)
カー・ニューマン解(カー・ニューマンかい、、)あるいはカー・ニューマン・ブラックホール解とは、一般相対性理論のアインシュタイン方程式の厳密解の一つで、回転する電荷を帯びたブラックホールを表現する軸対称時空の計量 (metric)である。このため、カー・ニューマン計量とも呼ばれる。ニュージーランドの数学者ロイ・カー (Roy Kerr)によるカー解の発見の2年後の1965年に、アメリカのニューマン (Ezra T. Newman) らによって発見された。質量・角運動量・電荷の三つのパラメータを持つブラックホール解として、一般相対性理論の描く時空の姿の理解に広く使われている。 カー・ニューマン計量は、次のように書ける。 ここで、 であり、 : は、ブラックホールの質量 : は、ブラックホールの角運動量 : は、ブラックホールの電荷 である。ここでは、光速と万有引力定数を1とする幾何学単位系()を用いている。 電荷がゼロ () の場合、この解はカー解を再現する。角運動量がゼロ () の場合、この解はライスナー・ノルドシュトロム解 (Reissner-Nordstrom解) を再現する。そして、電荷も角運動量もゼロの場合、シュヴァルツシルト解 (Schwarzschild解) を再現する。カー解と同様に、この計量がブラックホールとして理解されるのは、パラメータが のときである。その他、計量としての特徴は、カー解の項を参照されたい。 ブラックホール脱毛定理 (no-hair theorem) において、すべての現実的なブラックホールは、いずれ、角運動量・質量・電荷の3つの物理量のみを持つカー・ニューマンブラックホールに落ち着くと考えられている。また、「アインシュタイン・マクスウェル方程式での軸対称定常解は、カー・ニューマン解に限られる」というブラックホール唯一性定理 (uniqueness theorem) も存在する。 == 関連項目 == * 一般相対性理論 | アインシュタイン方程式 * ブラックホール | シュヴァルツシルトの解 | シュヴァルツシルト・ブラックホール * カー・ブラックホール | カー解 * ブラックホール脱毛定理 | ブラックホール唯一性定理 * 宇宙検閲官仮説 * ブラックホール熱力学 | ブラックホール面積定理 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「カー・ニューマン解」の詳細全文を読む スポンサード リンク
|