|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ カー : [かー] 【名詞】 1. car 2. (n) car ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana)
カー解(カーかい、)、カー計量()あるいはカー・ブラックホール解とは、一般相対性理論におけるアインシュタイン方程式の厳密解の一つで、真空中を定常的に回転する軸対称なブラックホールを表現している。ニュージーランドの数学者ロイ・カー()によって1963年に発見された。 カー計量によって表現される時空には、時間並進と回転に関する2つの等長変換群(アイソメトリ―)が作用する。 ペトロフ()による分類によれば、カー計量はDタイプに属する。 すぐ後に、さらに電荷を帯びた カー・ニューマン解()も発見され、角運動量・質量・電荷の3つのパラメータを持つブラックホール解として、その後、一般相対性理論の描く時空の姿の理解に広く使われている。 カー・ブラックホールでは、事象の地平面の外側には、回転の影響により、観測者が一点に留まれないエルゴ領域 (ergo region) と呼ばれる領域が形成される。はるか遠方の観測者から見ると、このエルゴ球のちょうど表面で回転と逆方向に放射した光子は放射した一点に留まっているように見え、球面の内側で回転の逆方向に放射した光子は回転の順方向に引きずられているように見える。(ただしエルゴ領域は事象の地平面の近傍に形成されるため時空が極度に縮んでおり、回転の順方向に放射した光子の速度も平坦な時空の光速度より遅れて見え、見かけの超光速が達成されているわけではない。)また、中心部の特異点は、リング状になっていると理解されている。 ブラックホール脱毛定理 () において、すべての現実的なブラックホールは、いずれ、角運動量・質量・電荷の3つの物理量のみを持つカー・ニューマンブラックホールに落ち着くと考えられている。また、「アインシュタイン・マクスウェル方程式での軸対称定常解は、カー・ニューマン解に限られる」というブラックホール唯一性定理 (uniqueness theorem)も存在する。 ホーキング は、重力の孤立系としてのブラックホールを、熱力学と類推することにより、ブラックホール熱力学 を構築した。 そこでは、ブラックホールの面積はエントロピーと対応し、常に増大する量となる(ブラックホール面積定理 )。 ==カー計量の表現== 以下では、光速 と万有引力定数 を1とする幾何学単位系()を用いる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「カー解」の詳細全文を読む スポンサード リンク
|