|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ラム : [らむ] 【名詞】 1. (1) lamb 2. (2) rump 3. (3) rum 4. (4) RAM (random access memory) 5. (P), (n) (1) lamb/(2) rump/(3) rum/(4) RAM (random access memory) ・ 正 : [ただし, せい, しょう] 【名詞】 1. (logical) true 2. regular ・ 正規 : [せいき] 1. (adj-na,n,adj-no) regular 2. legal 3. formal 4. established 5. legitimate ・ 正規直交化 : [せいきちょっこうか] 【名詞】 1. (gen) (math) ortho-normalization 2. ortho-normalisation ・ 直 : [ひた, ちょく] 【名詞】 1. earnestly 2. immediately 3. exactly ・ 直交 : [ちょっこう] (n,vs) orthogonal ・ 化 : [か] (suf) action of making something ・ 法 : [ほう] 1. (n,n-suf) Act (law: the X Act)
グラム・シュミットの正規直交化法(グラム・シュミットのせいきちょっこうかほう、)とは、計量ベクトル空間に属する線型独立な有限個のベクトルが与えられたとき、それらと同じ部分空間を張る正規直交系を作り出すアルゴリズムの一種。シュミットの直交化(ちょっこうか、)ともいう。変換行列は上三角行列に取ることができる。正規化する工程を省略すると、必ずしも正規でない直交系を得ることができる。 == アルゴリズム == ''V'' を計量ベクトル空間とし、''V'' のベクトル ''v'', ''u'' の内積を (''v'', ''u'') と表すことにする。与えられたベクトルの線型独立系を とする。 ; 直交化 : によって順に新しいベクトルを作っていくと、 は新しい線型独立系になる。構成から、互いに直交していることは容易にわかる。 ; 正規化 : とおけば が求める性質を満たす正規直交系であることがわかる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「グラム・シュミットの正規直交化法」の詳細全文を読む スポンサード リンク
|