|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 関 : [せき, ぜき] (suf) honorific added to names of makuuchi and juryo division sumo wrestlers ・ 関数 : [かんすう] (n) function (e.g., math, programming, programing) ・ 数 : [すう, かず] 1. (n,n-suf) number 2. figure
セルバーグゼータ函数(Selberg zeta-function)は、アトル・セルバーグ により導入された。有名なリーマンゼータ函数 : の類似で、ここに は素数の集合を表す。セルバーグゼータ函数は、素数の代わりに単純な閉測地線の長さを使う。 を SL(2,R) の部分群とすると、セルバーグゼータ函数は次のように定義される。 : あるいは、 : ここに p は素な合同類全体を渡り、 N(p) は合同類 p のノルムで、p のより大きい固有値の二乗である。 有限領域を持つ双曲曲面に対して、セルバーグゼータ函数が付帯している。この函数は複素平面上の有理型函数である。このゼータ函数は、曲面上の閉じた測地線の言葉で定義される。 セルバーグゼータ函数 Z(s) のゼロ点と極は、曲面のスペクトルのデータの言葉で記述することができる。 ゼロ点は次のような点である。 # 固有値 を持つ全てのカスプ形式に対し、点 にゼロ点を持つ。ゼロ点のオーダーは、対応する固有空間の次元に等しい。(カスプ形式とは、定数項がゼロのフーリエ展開を持つラプラス・ベルトラミ作用素の固有函数である。) # ゼータ函数は散乱行列 の行列式の全ての極でゼロ点を持つ。ゼロ点のオーダーは、散乱行列の対応する極のオーダーに等しい。 ゼータ函数は、 で極をもち、点 で、極、もしくはゼロ点を持つ。 伊原のゼータ函数は、セルバーグゼータ函数の p-進類似(グラフ理論的な類似)と考えられている。 == モジュラ群のセルバーグゼータ函数 == をモジュラ群として、曲面が である場合には、セルバーグゼータ函数は、特に興味が持たれる。この特別な場合は、セルバーグゼータ函数が密接にリーマンゼータ函数と結びついているからである。 この場合は、散乱行列の行列式が次で与えられる。 : 特に、リーマンゼータ函数が でゼロ点を持つと、散乱行列の行列式は で極をもつので、セルバーグゼータ函数は でゼロ点を持つ。
|