|
テンソル
(n) tensor, (n) tensor =========================== ・ テン : [てん] 【名詞】 1. 10 2. ten 3. (P), (n) 10/ten ・ テンソル : [てんそる] (n) tensor, (n) tensor
テンソル(, )とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。 == いくつかのアプローチ == テンソルの定義・表示と取り扱いには、いくつかの同等な方法がある。実際にそれらが同じことを指していることを納得するには、多少の慣れが必要である。 古典的なアプローチではテンソルは多次元の配列で、階数0のスカラーや階数1のベクトル、階数2の行列などの階数nへの一般化を与えているものと見なされる。テンソルの「成分」は配列の要素の値によって与えられることになる。この考えはテンソル場として一般化され、テンソルの成分として関数やその微分が取り扱われるようになる。 テンソルとよばれるためには配列は基準にしている座標系がかわるときには一定の変換を受けなければならない。この変換はベクトルの要素に対する関係を一般化したものであり、ベクトルの場合と同様に表している量が本質的には表示のための座標系の選択によらないものであることを示している。 物理学における通常のテンソルの定義の仕方は、特定の規則に従って成分が変換されるような対象という言い方を用いるもので、との概念がもちいられる。 現代的な(成分を使わない)アプローチではテンソルはまず抽象的に多重線形性の概念にもとづく数学的対象として定義される。よく知られているような諸性質が線型写像としての(あるいはもっと一般的な部分についての)定義から導かれる。テンソルの操作規則は線形代数から多重線形代数への拡張の中で自然に現れる。 数学における普通のやり方では、ある種のベクトル空間を用いて、必要なときに基底を考えるまでは特に座標系を指定しないようにされる。例えば共変ベクトルは一次微分形式として説明できるし、あるいは反変ベクトル空間の双対空間の元として説明することもできる。 現代流の成分によらないベクトルの概念によって、成分表示にもとづく伝統的な(しかし、初学者にベクトルの概念がどんなものかを教えるには有効な)取り扱いが置き換えられるように、この取り扱いは成分にもとづく取り扱いをより高度な考え方によって置き換えることを目的としている。「テンソルはテンソル空間の元のことなのだ」という標語を掲げることもできるだろうが、高階のテンソルに対して幾何的な解釈をどう与えるかという難しさもあって、成分表示によらないアプローチが支配的になったというわけではない。 物理学者や技術者たちはベクトルやテンソルが(勝手に選べてしまうような)座標系に左右されない概念としての重要性を認識した。同様に、数学者たちは座標表示することで簡単に導けるようなテンソルの関係があることを見いだしている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「テンソル」の詳細全文を読む
=========================== 「 テンソル 」を含む部分一致用語の検索リンク( 2 件 ) テンソル 計量テンソル スポンサード リンク
|