|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana)
代数幾何学において、ネータースキーム (noetherian scheme) は をネーター環として開アフィン部分集合 による有限被覆をもつスキームである。より一般に、スキームが局所ネーター (locally noetherian) であるとは、それがネーター環のスペクトルによって被覆されるということである。したがって、スキームがネーターであることと局所ネーターかつ準コンパクトであることは同値である。ネーター環と同様、概念はエミー・ネーター (Emmy Noether) にちなんで名づけられている。 局所ネータースキームにおいて、 が開アフィン部分集合であれば、''A'' はネーター環であるということを示すことができる。特に、 がネータースキームであることと ''A'' がネーター環であることは同値である。''X'' を局所ネータースキームとする。このとき局所環 はネーター環である。 ネータースキームはネーター位相空間である。しかし逆は一般には間違いである。例えば、非ネーター付値環のスペクトルを考えよ。 定義はに拡張する。 == 参考文献 == * Robin Hartshorne, ''Algebraic geometry''. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ネータースキーム」の詳細全文を読む スポンサード リンク
|