|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 変 : [へん] 1. (adj-na,n) change 2. incident 3. disturbance 4. strange 5. flat (music) 6. odd 7. peculiar 8. suspicious-looking 9. queer 10. eccentric 1 1. funny 1
数学の分野におけるハートレー変換(ハートレーへんかん、)は、フーリエ変換と非常に関係の深い、実数値関数を実数値関数へと写す積分変換である。1942年、ラルフ・ハートレーによりフーリエ変換の代替的なものとして提唱され、多くの知られているの内の一つとなった。フーリエ変換と比較して、ハートレー変換には実関数を実関数へと変換し、逆変換がそれ自身となるという長所がある。 1983年、によりこの変換の離散版であるが考案された。 二次元のハートレー変換は、と同様なあるアナログ光学処理によって計算される。その利点として、複素フェーズよりも振幅と符号のみが必要とされる、ということが提唱されている(Villasenor, 1994)。しかし、光学ハートレー変換は未だ広く利用されてはいないようである。 ==定義== 実数値関数 ''f''(''t'') のハートレー変換は : により定義される。ここで、応用の場面での の意味は角周波数であり、 : は「余弦正弦(cosine-and-sine)」あるいは「ハートレー核」と呼ばれるものである。工学において、この変換は信号(関数)を時間領域からハートレースペクトル領域(周波数領域)へと写す。 ===逆変換=== ハートレー変換は、それ自身が逆変換(対合)であるという便利な性質を持つ。すなわち : が成立する。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ハートレー変換」の詳細全文を読む スポンサード リンク
|