|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 状 : [じょう] 1. (n,n-suf) shape ・ 状態 : [じょうたい] 【名詞】 1. current status 2. condition 3. situation 4. circumstances 5. state ・ 態 : [たい, ざま] 【名詞】 1. plight 2. state 3. appearance ・ 方 : [ほう] 1. (n-adv,n) side 2. direction 3. way ・ 方程式 : [ほうていしき] 【名詞】 1. equation ・ 程 : [ほど] 1. (n-adv,n) degree 2. extent 3. bounds 4. limit ・ 式 : [しき] 1. (n,n-suf) (1) equation 2. formula 3. expression 4. (2) ceremony 5. (3) style
ファン・デル・ワールスの状態方程式()とは、実在気体を表現する状態方程式の一つである。1873年にファン・デル・ワールスにより提案された。 ファン・デル・ワールスの状態方程式は、実在気体の理想気体からのずれを二つのパラメータを導入することで表現している。二つのパラメータを導入する簡単な補正ではあるが、ジュール=トムソン効果や気相-液相の相転移について期待される振る舞いを再現できる上、解析的扱いが易しいため頻繁に用いられる。ただし、あくまで一つの理論モデルであり、厳密に実在気体の振る舞いを表現できる訳ではない。また、二つのパラメータだけで理想気体からのずれを表現しているため、ビリアル方程式のように系統的に近似の精度を上げていく事が出来ない欠点もある。 == 方程式 == ファン・デル・ワールスの状態方程式においては、熱力学温度 、モル体積 の平衡状態における圧力が で表される。係数 は実在気体の理想気体からのずれを表現するパラメータで気体の種類ごとに定まり、ファン・デル・ワールス定数と呼ばれる。 より実験を再現するように もパラメータとすることも出来るが、低密度領域 、 で理想気体に近い振る舞いをするように、通常は をモル気体定数と等しく選ぶ。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ファンデルワールスの状態方程式」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Van der Waals equation 」があります。 スポンサード リンク
|