|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 不 : [ふ] 1. (n-pref) un- 2. non- 3. negative prefix ・ 不等 : [ふとう] 1. (adj-na,n) disparity 2. inequality ・ 不等式 : [ふどうしき, ふとうしき] (n) (gen) (math) (expression of) inequality ・ 等 : [など] 1. (suf) and others 2. et alia 3. etc. (ら) ・ 等式 : [とうしき] (n) (gen) (math) equality ・ 式 : [しき] 1. (n,n-suf) (1) equation 2. formula 3. expression 4. (2) ceremony 5. (3) style
数学におけるフリードリヒの不等式(フリードリヒのふとうしき、)とは、による函数解析学の一定理である。函数の弱微分に対する ''Lp'' 評価と、その定義域の形状を利用することで、その函数の''Lp'' ノルムに対する評価を与えるものである。ソボレフ空間上のいくつかのノルムが同値であることを示すために利用することが出来る。 == 不等式の内容 == Ω はユークリッド空間 R''n'' の有界部分集合で、その径は ''d'' とする。''u'' : Ω → R はソボレフ空間 に属するものとする(すなわち、''u'' は ''W''''k'',''p''(Ω) に属し、そのトレースはゼロ)。このとき、次が成り立つ。 : この評価式において * は''Lp'' ノルムを表す; * ''α'' = (''α''1, ..., ''α''''n'') は多重指数で、そのノルムは |''α''| = ''α''1 + ... + ''α''''n'' である; * Dα''u'' は次の混合偏導函数である。 :: 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「フリードリヒの不等式」の詳細全文を読む スポンサード リンク
|