翻訳と辞書
Words near each other
・ フロビッシャー (重巡洋艦)
・ フロビッシャーベイ
・ フロビッシャー・ベイ
・ フロビッシャー湾
・ フロプティカルディスク
・ フロプレステージュ
・ フロプロピオン
・ フロベニウス
・ フロベニウスの定理
・ フロベニウスの定理 (代数学)
フロベニウスノルム
・ フロベニウスリー代数
・ フロベニウスリー環
・ フロベニウス代数
・ フロベニウス元
・ フロベニウス内積
・ フロベニウス写像
・ フロベニウス多元環
・ フロベニウス多様体
・ フロベニウス準同型


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

フロベニウスノルム : ミニ英和和英辞書
フロベニウスノルム
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。


フロベニウスノルム ( リダイレクト:行列ノルム#フロベニウスノルム ) : ウィキペディア日本語版
行列ノルム[ぎょうれつのるむ]
線型代数学における行列ノルム(ぎょうれつノルム、)は、ベクトルのノルム行列に対し自然に一般化したものである。
== 性質 ==
以下では K実数R または複素数C のいずれかを表すものとする。
K の要素を ''m''-行 ''n''-列の矩形に並べた行列の全体が通常の和とスカラー倍に関して成すベクトル空間をここでは K''m''×''n'' で表す。K''m''×''n'' 上の行列のノルムはベクトルとしてのノルムである。すなわち、行列 ''A'' のノルムを ‖''A''‖ で表せば
* 正定値性: ‖''A''‖ ≥ 0 かつ等号成立は ''A'' = ''O'' と同値、
* 斉次性: α ∈ ''K'', ''A'' ∈ K''m''×''n'' ならば ‖α''A''‖ = |α|‖''A''‖,
* 劣加法性: ''A'', ''B'' ∈ K''m''×''n'' ならば ‖''A'' + ''B''‖ ≤ ‖''A''‖ + ‖''B''‖
が全て満たされる。また、''m'' = ''n'' すなわち正方行列の場合には、必ずというわけではないが、単にベクトルとしての条件よりも強い、行列としての性質に対する条件
* 劣乗法性: ‖''AB''‖ ≤ ‖''A''‖‖''B''‖
* ∗-性: ‖''A''‖ = ‖''A''‖ (ただし ''A'' は複素行列 ''A'' の随伴である。実行列なら単に転置をとればよい)
を課すこともある。劣乗法性を持つノルムは劣乗法的ノルム と呼ぶ(文献によっては劣乗法的なものに限って行列ノルムと呼ぶものもある)。劣乗法的行列ノルムを備えた ''n''-次正方行列全体の成す集合バナッハ代数の一例である。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「行列ノルム」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Matrix norm 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.