翻訳と辞書
Words near each other
・ プロテウス(属)
・ プロテウス属
・ プロテウス-ミラビリス(変形菌の一種)
・ プロテウス-モルガニイ(モルガネラ-モルガニイの旧名)
・ プロテオグリカン
・ プロテオグリカン、 ムコ多糖たんぱく質
・ プロテオケファールス目
・ プロテオソーム
・ プロテオバクテリア
・ プロテオバクテリア門
プロテオミクス
・ プロテオミックス
・ プロテオリピド
・ プロテオース
・ プロテオーム
・ プロテオーム解析
・ プロテオ古細菌界
・ プロテクション
・ プロテクタ
・ プロテクター


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

プロテオミクス : ミニ英和和英辞書
プロテオミクス
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。


プロテオミクス ( リダイレクト:プロテオーム解析 ) : ウィキペディア日本語版
プロテオーム解析[ぷろておーむかいせき]

プロテオーム解析(Proteomic analysis)、またはプロテオミクス(Proteomics)とは、特に構造と機能を対象としたタンパク質の大規模な研究のことである。タンパク質は細胞代謝経路の重要な構成要素として生物にとって必須の物質である。「プロテオミクス」という言葉は、遺伝子を網羅的に研究する「ゲノミクス」という言葉と、タンパク質を意味する英語「プロテイン」とを合わせて作られた造語である。ゲノムがある生物の持つ全ての遺伝子のセットを表すのに対して、プロテオームはある生物が持つ全てのタンパク質のセット、またはある細胞がある瞬間に発現している全てのタンパク質のセットを意味する。
プロテオミクスは、ゲノミクスの次にシステム生物学の中心になる学問分野だと考えられている。ゲノムがある生物の全ての細胞でほぼ均一なのに対して、プロテオームは細胞や時間ごとに異なっているため、プロテオミクスはゲノミクスよりもかなり複雑になる。同じ生物でも、異なった組織、異なった時間、異なった環境ではかなり異なったタンパク質発現をする。また、タンパク質自体が遺伝子と較べて遥かに多様であることもプロテオーム解析を難しくしている理由の一つである。例えば、ヒトには約25000個の遺伝子が知られているが、これらの遺伝子に由来するタンパク質は50万個を超えると見積もられている。このようなことが起きる原因は、選択的スプライシングやタンパク質の修飾、分解などである。
プロテオミクスはその生物についてゲノミクスよりも多くの情報を与えるため、科学者たちはこれにとても興味を抱いている。一つ目に、遺伝子の転写レベルからはタンパク質の発現レベルの非常に大まかな情報しか分からない。例え伝令RNAの作られる量が多くても、分解が早かったり翻訳が効率的に行われなかったりするとタンパク質の量は少なくなる。二つ目に、多くのタンパク質は翻訳後修飾を受け、その活性にも影響を受ける。例えば、リン酸化を受けるまで活性状態にならないタンパク質もある。三つ目に、選択的スプライシングや選択的翻訳後修飾により、1つの遺伝子が1つ以上のタンパク質を作り出すことがある。四つ目に、多くのタンパク質は他のタンパク質やRNAと複合体を形成し、機能を発揮することがある。
タンパク質は生物の生命活動の中心的な役割を果たすため、プロテオミクスは、ある種の病気を示すなど生体指標の道具として使える。
ヒトゲノム計画の大まかなドラフトが公表されると、多くの科学者は遺伝子とタンパク質がどのように他のタンパク質を作り出しているのかを探求するようになった。ヒトゲノム計画で明らかとなった驚くべきことの一つは、タンパク質をコードしている遺伝子の数がヒトの持つタンパク質の数と較べて遥かに少ないことである。ヒトは、200万個もの未知のタンパク質を持つ可能性すらある。このようなタンパク質の多様性は、選択的スプライシングと翻訳後修飾がもたらしていると考えられている。この矛盾はタンパク質の多様性はゲノム解析だけでは分からず、プロテオーム解析が細胞や組織を理解する上で有効な手段となりうることを示唆している。
ヒトの持つ全てのタンパク質をカタログ化するために、タンパク質の機能と相互作用が調べられている。国際的な研究の調整はヒトプロテオーム機構(HUPO)が行っている。
==プロテオミクスの研究==
多くのタンパク質は他のタンパク質と相互作用しており、プロテオミクス研究の目標の一つはこのタンパク質間相互作用を明らかにすることである。これは、新規に発見されたタンパク質の機能を推定する手がかりにもなる。これまでに多くの研究手法が考え出されてきた。伝統的な方法の一つには酵母を使ったTwo-hybrid 法があり、新しく開発された方法にはマイクロアレイアフィニティークロマトグラフィー質量分析法などがある。
プロテオームを解析するためには、通常はまずタンパク質試料を個々のタンパク質に分離することになる。よく使われる手法の一つは二次元電気泳動である。これは、タンパク質をまずは等電点によって、次に分子量によって分類する方法である。ゲル上に現れたタンパク質のスポットは化学染色蛍光染色によって可視化される。この時点で、染色の濃さによって定量できることもある。それぞれのスポットはゲルから切り出され、プロテアーゼによってペプチドに消化され、MALDI法などの質量分析法によってペプチドが同定される。この操作は、まずペプチドをマトリックスと混合してステージに置き、レーザーを照射してイオン化する。イオン化されたペプチドは電圧に沿って検出器の方向に飛行するが、検出器まで到達する時間と場所はペプチドの質量/電荷比によって異なる。質量が大きいと、到達により時間がかかる。質量は非常に高い精度で同定され、ここからペプチドの化学構造が分かり、ペプチドが同定できる。
タンパク質の混合物は分離をせずに直接同定することもできる。この方法ではタンパク質は混合物のまま消化され、ペプチドの混合物は高速液体クロマトグラフィー(HPLC)で疎水性に従って分離される。HPLCは質量分析装置に直接つながっている。カラムから溶出したペプチドはタンデム質量分析により同定される。1つ目の質量分析計でそれぞれのペプチドイオンが分離され、2つ目の質量分析計ではペプチドをフラグメントに分解して、そのパターンから配列を決定する。いくつかのサンプル間の量の比を決めるためには同位体でラベルされた試料が用いられる。
ヒトの遺伝子やタンパク質を研究することによって期待される成果のひとつは、新しい病気の治療薬が見つかる可能性があることである。ゲノムやプロテオーム解析の情報によって病気と関連するタンパク質を見出し、その三次元構造からタンパク質の活動を阻害するような物質をデザインするなどして新しい薬の候補を選定することが可能となる。これは新しい薬剤を探索する基本的な戦術といえる。たとえば酵素の活性部位にピッタリ当てはまり、しかも酵素から離れないような分子は、酵素を不活性化させることができる。また、個体により遺伝子に差異がある場合には、個人にとってより効率的に働く薬剤をデザインすることもできる。
数百万に及ぶ低分子から、タンパク質の三次元構造に当てはまるものをコンピュータによって探す作業は、「バーチャルリガンドスクリーニング」と呼ばれる。このよい例は、HIV-1プロテアーゼを不活性化する薬剤の探索である。HIV-1プロテアーゼはHIVの持つ巨大なタンパク質を切断して、機能を持った小さな酵素を作る。この酵素がなければウイルスは生存することができず、この薬剤はHIVを殺す効率のよい薬になりうる。
最近はWorld Community Gridのような、多くの分散コンピューティングプログラムがあり、世界中の人々が科学者の計算を手助けすることができる。このソフトは、数百万の世界中の家庭用コンピュータの処理能力をスーパーコンピュータに加算することができる。World Community GridではHIV、タンパク質の折り畳みデング熱等について計算を行っている。これら3つのプロジェクトはどれもタンパク質モデリングやタンパク質修飾モデルを中心にしている。分散コンピューティングによって得られたデータから、より特異的で効率的な治療法の手がかりを探すことができる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「プロテオーム解析」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Proteomics 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.