|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 記 : [き] (n,n-suf) chronicle ・ 号 : [ごう] 1. (n,n-suf) (1) number 2. issue 3. (2) sobriquet 4. pen-name
マリケン記号とは、点群の既約表現を表す記号のひとつである。分子などを扱う場合に便利なように工夫してある。 == ルール == *1次元の表現は全て''A''または''B''で示す。主軸である軸のまわりに回転した時に元と重なる(指標が1)ようなときには''A''で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'A''または''B''で示す。主軸である軸のまわりに回転した時に元と重なる(指標が1)ようなときには''A''で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'または''B''で示す。主軸である軸のまわりに回転した時に元と重なる(指標が1)ようなときには''A''で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'B''で示す。主軸である軸のまわりに回転した時に元と重なる(指標が1)ようなときには''A''で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'で示す。主軸である軸のまわりに回転した時に元と重なる(指標が1)ようなときには''A''で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'A''で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'で示し、同じ操作で元と反対称(指標が-1)になるものは''B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'B''で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'で示す。 添字の''1''と''2''は,''A''や''B''につけるときは、それぞれ主軸に垂直な軸(そのようなC2軸がないときは主軸を含む対称面)に対して対称であれば1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。''1''を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'を、反対称であれば''2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'2''をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'をつける。 *2次元の表現は''E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'E''で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'で、3次元の表現は''T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'T''で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'で示す。 ::数学的には「次元」としてマトリックスの次数を示すが、化学的には軌道や状態の多重度(縮退度)に対応すると考えるとわかりやすい。''E''や''T''につける添字は指標表のコンテンツからは直接決まらないので、一般的には任意の記号と考えて差し支えない。 *A'やB"などの「プライム」は、面に対して対称的ならば(')を,反対称的ならば(”)をつける。 *対称中心を持つ場合、反転対称(gerade)なら''g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'g''を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'を,反転反対称(ungerade)ならば''u''をつける。対称中心が無ければ何も付けない。'u''をつける。対称中心が無ければ何も付けない。'をつける。対称中心が無ければ何も付けない。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「マリケン記号」の詳細全文を読む スポンサード リンク
|