|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 剛性 : [ごうせい] 【名詞】 1. hardness 2. rigidity ・ 定理 : [ていり] 【名詞】 1. theorem 2. proposition ・ 理 : [り] 【名詞】 1. reason
数学において、モストウの剛性定理(Mostow's rigidity theorem)、あるいは強剛性定理(strong rigidity theorem)、モストウ・パラサードの剛性定理(Mostow–Prasad rigidity theorem)は、次元が 3 以上の有限体積の双曲多様体は、その基本群により決定され、従って一意となるという定理である。定理は閉多様体に対して で証明され、3次元の有限体積の双曲多様体に対しては で、少くとも次元が 3 以上である多様体に対しては で拡張された。 は、(Gromov norm)を使い、別な証明を与えた。 は、密接に関連する定理を証明した。特に、この定理は少くとも次元 3以上の双曲空間のアイソトピック群の余コンパクト離散群は、非自明な変形を持たないことを意味する。 モストウの剛性定理は ( ''n'' > 2 に対し) 有限体積を持つ双曲 ''n''-次元多様体の変形空間が、一点であることを示している。また、種数が ''g'' > 1 である双曲曲面に対して、次元 6''g'' − 6 のモジュライ空間が存在し、(微分同相を同一視した)定曲率な計量をパラメトライズする。(このことは(Teichmüller theory)において重要な事実である。)3次元では、(hyperbolic Dehn surgery)定理と呼ばれるウィリアム・サーストンの「非剛性」定理が存在する。この定理は、同相写像の型が許される限りの有限体積の多様体上の双曲構造を変形することから帰結する。加えて、「無限」体積の多様体上の双曲構造の変形空間の豊かな理論も存在する。 ==定理== 定理は、幾何学的定式化と、代数的定式化がある。
|