|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 測度 : [そくど] (n) measurement ・ 度 : [ど] 1. (n,n-suf) (1) degree (angle, temperature, scale, 2. (2) counter for occurrences 3. times 4. (3) strength (of alcohol) 5. (4) (uk) (pref) very 6. totally
数学(特に測度論)におけるラドン測度(ラドンそくど、)は、に因んで名づけられた、ハウスドルフ空間 ''X'' 上のボレル集合の成す完全加法族上の測度で局所有限かつ内部正則であるものをいう。 == 動機 == 位相空間の上に測度が定められるとき、その測度が空間の位相と何らかの意味で両立するような、よい測度の概念はあるかというのがよくある問題意識である。その位相空間のボレル集合上の測度を定義することは一つの方法であるが、これには一般にいくつか問題があって、例えばそのような測度には台が上手く定義できるとは限らない。あるいは、測度論を局所コンパクトハウスドルフ空間に制限して考え、測度として(いくつかの文献ではラドン測度の定義に採用されている)コンパクト台付き連続関数の空間上の正値線型汎関数に対応するものだけを考える方法もある。こうすれば病的な問題を孕まないよい理論が得られるが、そのままでは局所コンパクトでない空間に対して適用できない。 ラドン測度の理論は局所コンパクト空間のよくあるよい性質のほとんどを有しているが、任意のハウスドルフ空間に適用することができる。ラドン測度の定義の考え方は、正値汎関数に対応する局所コンパクト空間上の測度を特徴付ける何らかの性質を見つけることであり、それらの性質を勝手なハウスドルフ空間上のラドン測度の定義として利用することにある。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ラドン測度」の詳細全文を読む スポンサード リンク
|