|
リウヴィル数(リウヴィルすう、Liouville number)は、以下の定義を満たす実数である。 任意の正整数 ''n'' に対して、 : を満たす有理数 ''p''/''q'' (''q'' > 1) が少なくとも一つ存在するような実数 ''α'' をリウヴィル数という。 例えば、 : はリウヴィル数である。この数は、超越数であることが証明された初めての数である(ジョゼフ・リウヴィル、1844年)。特にこの数の場合、1が小数点以下、自然数の階乗の桁数に出現する(1!=1桁目、2!=2桁目、3!=6桁目、4!=24桁目…)。 有理数 ''α'' が 0 < |''α''| < 1 を満たし、整数からなる単調増加列''k'' ≧ 1 が ''a''''k'' + 1 / ''ak''→∞ (''k''→∞) を満たすとき、 : はリウヴィル数である。 == 性質 == * リウヴィル数は超越数である。 * リウヴィル数はマーラーの分類で''U'' 数に属する。 * 0 でない任意の実数は、2つのリウヴィル数の和、および積で表現することができる。 * リウヴィル数全体からなる集合は非可算集合であり、実数内で稠密であるが、1次元ルベーグ測度は 0 である。 上記の性質より、ほとんど全ての超越数はリウヴィル数ではない。リウヴィル数でないことが知られている数としては以下のようなものが挙げられる。 * 自然対数の底 ''e'' 。 * 円周率 π。 * チャンパーノウン定数 0.123456789101112… 。 * 1 でない任意の有理数 ''r'' に対するlog ''r'' 。 * 任意の整数 ''d'' ≧ 2 に対する 。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「リウヴィル数」の詳細全文を読む スポンサード リンク
|