|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 平 : [たいら, ひら] 【名詞】 1. the broad 2. the flat 3. palm ・ 平坦 : [へいたん] 1. (adj-na,n) even 2. flat 3. level
数学では、リッチ平坦多様体(Ricci-flat manifolds)は、リッチ曲率が 0 であるリーマン多様体である。物理学では、リッチ平坦多様体は、任意の次元で宇宙定数が 0 であるリーマン多様体に対して、アインシュタイン方程式の類似である(vacuum solution)を表わす。リッチ平坦多様体は、通常は宇宙定数が 0 である必要はないアインシュタイン多様体の特別な場合である。 リッチ曲率が、小さな測地用の球の体積がユークリッド空間の中の球の体積から逸脱する量を測る。小さな測地用の球は、体積の変えはしないが、ユークリッド空間の中の標準的な球とは「形」を変えることもありうる。 たとえば、リッチ平坦な多様体の中では、ユークリッド空間の中の円は、変形されて同じ面積を持つ楕円となっていることもありうる。これは(Weyl curvature)のおかげである。 リッチ平坦多様体は、(holonomy group)を制限される場合が多い。重要なケースとして、カラビ・ヤウ多様体や超ケーラー多様体がある。 == 参照項目 == * (Weyl tensor) 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「リッチ平坦多様体」の詳細全文を読む スポンサード リンク
|