翻訳と辞書
Words near each other
・ ルベーグの分解定理
・ ルベーグの収束定理
・ ルベーグの密度定理
・ ルベーグ可測
・ ルベーグ可積分
・ ルベーグ測度
・ ルベーグ測度の正則性定理
・ ルベーグ積分
・ ルベーグ空間
・ ルベーグ被覆次元
ルベーグ=スティルチェス積分
・ ルベーシュ
・ ルベーン・プラサ
・ ルペシッサのヨハネス
・ ルペストリス種
・ ルペニ
・ ルペニ・ザウザウニブカ
・ ルペリアン
・ ルペルカリア祭
・ ルペルカーリア祭


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

ルベーグ=スティルチェス積分 : ミニ英和和英辞書
ルベーグ=スティルチェス積分[るべーぐすてぃるちぇすせきぶん]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [ちょうおん]
 (n) long vowel mark (usually only used in katakana)
: [せき]
 【名詞】 1. (gen) (math) product 
積分 : [せきぶん]
 (n) integral
: [ぶん, ふん]
  1. (n,n-suf,pref) (1) part 2. segment 3. share 4. ration 5. (2) rate 6. (3) degree 7. one's lot 8. one's status 9. relation 10. duty 1 1. kind 12. lot 13. (4) in proportion to 14. just as much as 1

ルベーグ=スティルチェス積分 : ウィキペディア日本語版
ルベーグ=スティルチェス積分[るべーぐすてぃるちぇすせきぶん]
数学測度論解析学周辺分野におけるルベーグ=スティルチェス積分(ルベーグスティルチェスせきぶん、)はリーマン=スティルチェス積分および(狭義の、つまりルベーグ測度に関する)ルベーグ積分の一般化で、前者に対してはより一般の測度論の枠組みによる優位性を保つものになっている。ルベーグ=スティルチェス積分は、ルベーグ=スティルチェス測度と呼ばれる実数直線上の有界変動函数から得られる測度に関する通常のルベーグ式積分である。ルベーグ=スティルチェス測度は正則ボレル測度であり、逆に実数直線上の任意の正則ボレル測度はルベーグ=スティルチェス測度になる。
ルベーグ=スティルチェス積分(アンリ・ルベーグトーマス・スティルチェスに因む)は、この積分論に多大な貢献をしたヨハン・ラドンに因んでルベーグ=ラドン積分若しくは単にラドン積分とも呼ばれる。ルベーグ=スティルチェス積分の主な応用先には、確率論確率過程あるいはポテンシャル論などを含む解析学の一部の分野などがある。
== 定義 ==
ルベーグ=スティルチェス積分
:\int_a^b f\,dg = \int_a^b f(x)\,dg(x)
は ''f'': [''a'', ''b''] → R有界ボレル可測函数で、''g'': [''a'', ''b''] → R が右連続な有界変動函数ならば定義される。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「ルベーグ=スティルチェス積分」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.