|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana)
レイトレーシング(ray tracing)は、波の線(伝播経路)を追跡することで、ある点において観測される画像・音像などをシミュレートする計算手法である。まれに「レイ・トレーシング」と表記することも〔〕。 レイトレーシングを行う対象は「光線」が基本でありこれは「光線追跡法」とも呼ばれるが、他にも「電波」「地震波」「超音波」などでも行われることがあり、それぞれ「波線追跡法」「音線追跡法」などと呼ばれることもある。 ある点(ある人の視点・耳・電波観測装置など)に届く光線・波線(電波の仮想的な線)・音線(音波の仮想的な線)などを逆にたどることによって、その点における視像(画像)・音像などを描画する。たとえば光線であれば、物体の表面の反射率、また透明度・屈折率等々を細かく反映させた像を得られるのが特徴で、1画素ずつ光線の経路を計算するので、高い画質で描画することができるという特長がある、が反面、一般的に計算量は多くなる。 この手法では反射や屈折は忠実に再現できるが、回折は近似やモデリングを必要とする。対象が異なっても伝播経路を追跡する基本的な原則は共通であるが、計算手順はそれぞれで異なる。 == 光線 == レイトレーシングの基本は、ray レイ(=光線)を扱うものであり、これは3次元コンピュータグラフィックス画像を描くレンダリング工程での手法のひとつである。日本語では「光線追跡法」とも。 この手法は、カメラや観察者に相当する受信点を中心に画角となる2次元方向内の微小な角度ごとのそれぞれの方向から受け取るはずの光線(レイ)を、算術演算処理をそれぞれ行うことで仮想的に逆方向に追跡し、その方向に何が見えるかを判定する。透明な物体では境界面ごとに複数の屈折光と反射光に分かれるが、それぞれの伝播経路を計算する。わずかな吸収を除けばほとんどが反射光となる鏡面反射では演算量があまり増えないが、透明や鏡面でない物体の表面は周囲のあらゆる方向へ光を乱反射しているため、それらをすべて演算しようとすれば演算量が指数関数的に増えてしまい有限時間内には処理できなくなる。こういった拡散反射は乱数によってランダムに選ばれた方向のみに限定することで演算量を現実的な処理量に抑えた「モンテカルロ・レイトレーシング」によってシミュレートされる。モンテカルロ・レイトレーシングの内でも「分散レイトレーシング」と呼ばれる手法では、ある程度のリアルさをシミュレートするために拡散反射する表面ごとに逆追跡が必要な経路が多数生じるため、複数の表面同士で反射する光まで再現しようとしてやはり演算処理量が爆発的に増加してしまう。拡散反射する表面での逆追跡が必要な経路をランダムに1つだけ生む手法は「パス・レイトレーシング」と呼ばれる。 レイトレーシングに似た手法、又は最も広義のレイトレーシング手法の1つとも考えられるものに「フォトン・マッピング」がある。レイトレーシングが観察者やカメラ側から光線の経路を逆追跡するのに対して、フォトン・マッピングでは光源側から光線の経路を再現する〔。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「レイトレーシング」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Ray tracing (graphics) 」があります。 スポンサード リンク
|