|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana)
レムニスケート()は極座標の方程式 : で表される曲線である。連珠形(れんじゅけい)とも呼ばれる。またヤコブ・ベルヌーイのレムニスケートとも呼ばれる。カッシーニの卵形線の一種と見なすことができる。 直交座標の方程式では : となる。 x軸、y軸に対して線対称である。原点Oで自らと交わる。原点Oにおける接線はy=x,y=-xとなる。原点Oとでx軸と交わる(以下、この二点を「交点」と呼ぶ)。点 (±''a'', 0) は、レムニスケートの焦点(英:focus, -ci)と呼ばれる。レムニスケート上では、「任意の点と一方の焦点との距離」と「その任意の点ともう一方の焦点との距離」の積は一定である。直角双曲線の接線に、原点から垂線を下ろした点の軌跡はレムニスケートになる。また、中心が直角双曲線上にあり、なおかつ原点を通る円の包絡線はレムニスケートになる。 ループ1つで囲まれる面積はであり、2つ合わせてとなる。曲線の弧長は楕円積分によって表される。 レムニスケートはベルヌーイ兄弟によって最初に発見され、イタリアの数学者ファニャーノによって楕円積分論の事例として詳しく研究された。オイラーはファニャーノの『数学論文集』に刺激を受け、微分方程式論の研究を発展させ、独自の楕円積分論を構築した。 == 関連項目 == *レムニスケート周率 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「レムニスケート」の詳細全文を読む スポンサード リンク
|