翻訳と辞書
Words near each other
・ 不飽和脂肪酸
・ 不飽和鉄結合能
・ 不養生
・ 不首尾
・ 不馴
・ 不馴れ
・ 不鮮明
・ 不鮮鋭度
・ 与
・ 与え
与えられた大きさよりも小さい素数の個数について
・ 与えられた数より小さい素数の個数について
・ 与える
・ 与え主
・ 与する
・ 与る
・ 与一
・ 与一号
・ 与件
・ 与位の洞門


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

与えられた大きさよりも小さい素数の個数について : ミニ英和和英辞書
与えられた大きさよりも小さい素数の個数について[あたえ]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

与え : [あたえ]
 【名詞】 1. gift 2. godsend
大き : [おおき]
  1. (adj-na) big 2. large 
大きさ : [おおきさ]
 【名詞】 1. size 2. dimensions 3. volume 
小さ : [ちいさ]
  1. (adj-na) small 2. little 3. tiny
小さい : [ちいさい]
 【形容詞】 1. small 2. little 3. tiny 
: [もと]
  1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation
素数 : [そすう]
 (n) prime numbers
: [すう, かず]
  1. (n,n-suf) number 2. figure 
: [こ]
  1. (n,suf) (1) counter for articles and mil. units 2. (2) individual 
個数 : [こすう]
 (n) number of articles

与えられた大きさよりも小さい素数の個数について ( リダイレクト:与えられた数より小さい素数の個数について ) : ウィキペディア日本語版
与えられた数より小さい素数の個数について[あたえられたすうよりちいさいそすうのこすうについて]

与えられた数より小さい素数の個数について』(あたえられたすうよりちいさいそすうのこすうについて〔訳は上記文献の平林幹人による。(鹿野(1991)、17-28頁)〕、ドイツ語の原題: ''Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse'', 英語での定訳: ''On the Number of Primes Less Than a Given Magnitude'')は、19世紀ドイツ数学者であるベルンハルト・リーマン1859年に発表した論文である。同年の学術誌『ベルリン学士院月報』(''Monatsberichte der Königlich Preußischen Akadademie der Wissenschaften zu Berlin'') 上に掲載された。解析幾何学の分野における業績が多かったリーマンが数論の分野で唯一発表した論文であり、わずか8ページしかなかったが、数々の画期的な内容を含み、後世に甚大な影響を及ぼした。特に解析的整数論においては、本論文は同分野の基本文献とされている。内容的には、この論文はあるべき大論文の要約版・研究速報と見なすことができたが、リーマン自身は7年後の1866年に39歳の若さで没したため、本論文の詳細版が出版されることはついになかった。もし詳細版が出版されていれば、関連分野の研究は70年は短縮されただろうという指摘がある。
本論文には6個の予想が含まれていたが、リーマン没後、うち5つまでは後の数学者達によって証明が与えられた。最後に残されたのがリーマン予想であり、これは数論における最も重要な未解決問題の一つとされている。
この論文の影響はあまりに大きかったため、例えば複素数の表記方法として普通は ''z'' = ''x'' + ''iy''(特に ''z'' = 1/2 + ''iy'')と書くところを、リーマンゼータ関数の非自明な零点を論じる場合に限っては、本論文にちなんで ''s'' = 1/2 + ''it'' と書く習慣がある〔''s'' = σ + ''it'' と書く習慣はエトムント・ランダウ (1903年) から始まる。〕。また、「リーマンのゼータ関数」という名称も、元々オイラーが導入した関数であるにもかかわらず、本論文でリーマンが記号 ζ(''s'') を用いて記述したことから以後定着した。
== 導入された新定義 ==

*リーマンゼータ関数 ζ(''s'') の ''s'' = 1 を除く全複素平面への解析接続
*整関数 ξ(''t'')〔''s'' = 1/2 + ''it'' として
:\xi(t)=\Gamma \left( \frac+1 \right) (s-1)\pi^\zeta(s)\,
で定義する。ここに、Γ はガンマ関数である。現代においてよく用いられる ξゼータ関数も参照)とは異なることに注意。〕
*離散関数 ''J''(''x'')〔原論文では ''f''(''x'') と表されている。''x'' ≥ 0 で定義され、''J''(0) = 0 かつ ''J''(''x'') は素数の冪 ''p''''n'' 毎に 1/''n'' ずつ飛び飛びの値をとる。〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「与えられた数より小さい素数の個数について」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 On the Number of Primes Less Than a Given Magnitude 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.