翻訳と辞書
Words near each other
・ 代数的K-群
・ 代数的K理論
・ 代数的な元
・ 代数的サイクル
・ 代数的サイクルの標準予想
・ 代数的データ型
・ 代数的トポロジー
・ 代数的位相幾何学
・ 代数的内部
・ 代数的双対
代数的双対空間
・ 代数的和
・ 代数的微分方程式
・ 代数的数
・ 代数的数論
・ 代数的整数
・ 代数的整数論
・ 代数的構造
・ 代数的独立
・ 代数的閉


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

代数的双対空間 : ミニ英和和英辞書
代数的双対空間[だいすうてき]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [よ, しろ]
 【名詞】 1. world 2. society 3. age 4. generation 
代数 : [だいすう]
 (n) algebra
: [すう, かず]
  1. (n,n-suf) number 2. figure 
: [まと, てき]
 【名詞】 1. mark 2. target 
: [そう, ふた]
 【名詞】 1. pair 2. set 
双対 : [そうたい, そうつい]
 (n) (gen) (math) reciprocity
: [つい]
 【名詞】 1. pair 2. couple 3. set 
対空 : [たいくう]
 (n) antiaircraft
: [そら]
 【名詞】 1. sky 2. the heavens 
空間 : [くうかん]
 【名詞】 1. space 2. room 3. airspace 
: [けん, ま]
 【名詞】 1. space 2. room 3. time 4. pause 

代数的双対空間 ( リダイレクト:双対ベクトル空間 ) : ウィキペディア日本語版
双対ベクトル空間[そうついべくとるくうかん]
数学におけるベクトル空間双対ベクトル空間(そうついベクトルくうかん、)あるいは単に双対空間(そうついくうかん、)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。
一般に双対空間には、代数的双対連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。
== 双対空間 ==
''F'' 上の任意のベクトル空間 ''V'' の(代数的)双対空間 ''V'' は ''V'' 上の線型写像 (すなわち線型汎函数)全体の成す集合として定義される。集合としての ''V'' には、次の加法とスカラー乗法
: \begin
& (\varphi + \psi)(x) = \varphi(x) + \psi(x) \\
& (a \varphi)(x) = a (\varphi(x))
\end\quad (\varphi,\psi\in V^
*,\,x\in V,\,a\in F)

を定義することができて、それ自身 ''F'' 上のベクトル空間となる。この代数的双対空間 ''V'' の元を、余ベクトル共変ベクトル)あるいは一形式と呼ぶこともある。
双対空間 ''V'' の元である汎函数 φ と ''V'' の元との対をしばしば括弧を用いて あるいは で表す。この対の記法は非退化な双線型形式量子力学などの多くの分野では ⟨·,·⟩ を 上の半双線型形式 を表すのに用いている。〕 を定める。このとき、 は ''V'' と''V'' との間に双対性を定める、''V'' と ''V'' を双対にする、あるいは ''V'' と ''V''双対性を表す内積 (duality pairing) であると言う。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「双対ベクトル空間」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Dual space 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.