|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 位 : [くらい] 1. (n,n-adv,suf,vs) grade 2. rank 3. court order 4. dignity 5. nobility 6. situation 7. throne 8. crown 9. occupying a position 10. about 1 1. almost 12. as 13. rather 14. at least 15. enough to 1 ・ 相 : [そう] 【名詞】 1. aspect 2. phase 3. countenance ・ 空 : [そら] 【名詞】 1. sky 2. the heavens ・ 空間 : [くうかん] 【名詞】 1. space 2. room 3. airspace ・ 間 : [けん, ま] 【名詞】 1. space 2. room 3. time 4. pause ・ 法 : [ほう] 1. (n,n-suf) Act (law: the X Act)
応用数学の分野における位相空間法(いそうくうかんほう、)とは、力学系の解を構成し解析するための、すなわち、時間依存の微分方程式を解くためのある手法のことを言う。この手法では、まずはじめに、新たな変数を導入することによって、方程式を時間について一階の連立微分方程式へと書き換える。すると、元の変数と新たな変数は、位相空間におけるあるベクトルを形成する。このとき解は、時間によってパラメータ付けられる、位相空間内の曲線となる。この曲線は通常、軌跡(trajectory)や軌道(orbit)と呼ばれる。微分方程式は、その曲線の幾何的表現として再び定式化される。すなわち、元の時間のパラメータ表現を必要とせず、その位相空間の変数のみについての微分方程式として、再び定式化される。最後に、その位相空間で得られた解が、再び元の設定へと変換される。 位相空間法は物理学の分野で幅広く用いられている。例えば、反応拡散系の進行波解を見つける時に、用いられる〔 A. Kolmogorov, I. Petrovskii, and N. Piscounov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In V. M. Tikhomirov, editor, ''Selected Works of A. N. Kolmogorov I'', pages 248--270. Kluwer 1991. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1--25, 1937〕〔 Peter Grindrod. ''The theory and applications of reaction-diffusion equations: Patterns and waves.'' Oxford Applied Mathematics and Computing Science Series. The Clarendon Press Oxford University Press, New York, second edition, 1996. 〕。 == 関連項目 == *反応拡散系 *フィッシャーの方程式 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「位相空間法」の詳細全文を読む スポンサード リンク
|