|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 余 : [よ] 1. (n,suf) over 2. more than ・ 余接 : [よせつ] (n) cotangent ・ ベクトル : [べくとる] veotor
微分幾何学において、滑らかな(あるいは可微分)多様体の各点 ''x'' に ''x'' における余接空間 (cotangent space) と呼ばれるベクトル空間を取り付けることができる。余接空間は、より直接的な定義があるが(下記参照)、典型的には、''x'' における接空間の双対空間として定義される。余接空間の元は余接ベクトル (cotangent vector) あるいは接余ベクトル (tangent covector) と呼ばれる。 ==性質== 連結多様体上のすべての余接空間は多様体の次元に等しい同じ次元をもつ。多様体のすべての余接空間は「貼り合わせて」(すなわち和集合をとり位相を与えて)次元が2倍の新しい微分可能多様体、多様体の余接束を作ることができる。 点における接空間と余接空間はどちらも同じ次元の実ベクトル空間でありそれゆえ多くの可能な同型写像を経由して互いに同型である。リーマン計量やシンプレクティック形式の導入は点における接空間と余接空間の間の自然同型を任意の余接ベクトルに自然な接ベクトルを割り当てて生じる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「余接空間」の詳細全文を読む スポンサード リンク
|