|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 単 : [ひとえ, たん] 【名詞】 1. one layer 2. single ・ 単元 : [たんげん] (n) teaching unit ・ 元 : [げん, もと, がん] 1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation 4. (2) former ・ 集 : [しゅう] 【名詞】 1. collection ・ 集合 : [しゅうごう] 1. (n,vs) (1) gathering 2. assembly 3. meeting 4. (2) (gen) (math) set ・ 合 : [ごう] 【名詞】 1. go (approx. 0.18l or 0.33m)
数学における単集合(たんしゅうごう、; 単元集合、単項集合、一元集合)あるいは単位集合()は、唯一の元からなる集合である。一つ組 (1-tuple) や単項列 (a sequence with one element) と言うこともできる。 例えば、 という集合は単集合である。 == 性質 == ツェルメロ・フレンケル集合論の枠組みの中では正則性の公理が「自身を元とする集合」が存在しないことを保証するから、単元集合とその単元集合を含む集合とは必然的に異なる数学的対象を意味するものとなる〔。つまり、1 と とは同じものではないし、空集合のみからなる単項集合 は 空集合 ∅ ではない。また、例えば、 単集合であることと、その集合の濃度が 1 であることは同値である。自然数の集合論的構成において、自然数の 1 とは単集合 のことと定義される。 公理的集合論において、対の公理からの帰結として単元集合の存在が導かれる。即ち、任意の集合 ''A'' に対して、''A'' と ''A'' に対して対の公理を適用すれば なる集合の存在が保証されるが、これは ''A'' のみを元に持ちそれ以外の元は持たないから、単元集合 に他ならない。ここで ''A'' は任意の集合でよい、といっても集合がそもそもまったく存在しない場合には意味がないが、空集合の公理があれば少なくとも空集合 ∅ は集合になるから、''A'' = ∅ ととって先の議論は正当化できる。 任意の集合 ''A'' と単集合 ''S'' に対し、''A'' から ''S'' への写像はちょうど一つだけ存在する(それは ''A'' の各元を ''S'' の唯一の元へ写すものである)。従って任意の単元集合は集合の圏にける終対象である。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「単集合」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Singleton (mathematics) 」があります。 スポンサード リンク
|