|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 対 : [つい] 【名詞】 1. pair 2. couple 3. set ・ 対数 : [たいすう] (n) logarithm ・ 数 : [すう, かず] 1. (n,n-suf) number 2. figure ・ 的 : [まと, てき] 【名詞】 1. mark 2. target ・ 微分 : [びぶん] (n,vs) differential (e.g., calculus) ・ 分 : [ぶん, ふん] 1. (n,n-suf,pref) (1) part 2. segment 3. share 4. ration 5. (2) rate 6. (3) degree 7. one's lot 8. one's status 9. relation 10. duty 1 1. kind 12. lot 13. (4) in proportion to 14. just as much as 1 ・ 形 : [けい, かたち, ぎょう] 1. (suf) shape 2. form 3. type ・ 形式 : [けいしき] 【名詞】 1. (1) form 2. formality 3. format 4. (2) appearance 5. mode 6. (3) math expression ・ 式 : [しき] 1. (n,n-suf) (1) equation 2. formula 3. expression 4. (2) ceremony 5. (3) style
複素多様体論や代数多様体論では、対数的(logarithmic)微分形式は、ある種類の極をもつ有理型微分形式である。 X を複素多様体とし、D ⊂ X を因子、ω を X−D 上の正則 p-形式とする。ω と dω が D に沿って大きくとも 1 の位数の極を持つとき、ω を D に沿って対数的極を持つという。ω は対数的 p-形式とも呼ばれる。対数的 p-形式はD に沿った X 上の有理 p-形式の層をなし、次のように書く。 : リーマン面の理論では、次の局所表現を持つ対数的 1-形式が存在する。ある有理型函数(有理函数) に対し : となる。ここに g は 0 で正則で 0 とはならなく、m は f の 0 でのオーダーである。すなわち、ある開被覆が存在し、この微分形式の対数微分としての局所表現が存在する(通常の微分作用素 d/dz の中の外微分 d を少し変形する)。ω が整数の留数の単純極を持つだけであることに注意する。高次元の複素多様体では、(Poincaré residue)は、極に沿った対数的微分形式の振る舞いを記述することに使われる。 ==正則対数複体== の定義と外微分形式 d は d2 = 0 を満たすという事実により、 : を得る。このことは、因子 D に対応する正則対数複体(holomorphic log complex)として知られている層の複体 が存在することを意味する。この複体は、 の部分複体であり、そこでは は包含写像であり、 は X − D 上の正則形式の層の複体である。
|