翻訳と辞書
Words near each other
・ 平方中学校
・ 平方亨
・ 平方元
・ 平方元基
・ 平方公尺
・ 平方剰余
・ 平方剰余の相互法則
・ 平方和
・ 平方因子をもたない
・ 平方因子をもたない数
平方因子をもたない整数
・ 平方因子を持たない整数
・ 平方完成
・ 平方宏明
・ 平方小学校
・ 平方平方数
・ 平方度
・ 平方形
・ 平方恭子
・ 平方数


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

平方因子をもたない整数 : ミニ英和和英辞書
平方因子をもたない整数[へいほういんしをもたないせいすう]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [たいら, ひら]
 【名詞】 1. the broad 2. the flat 3. palm
平方 : [へいほう]
 【名詞】 1. square (e.g., metre) 2. square 
: [ほう]
  1. (n-adv,n) side 2. direction 3. way 
: [いん]
 【名詞】 1. cause 2. factor 
: [こ, ね]
 (n) first sign of Chinese zodiac (The Rat, 11p.m.-1a.m., north, November)
整数 : [せいすう]
 【名詞】 1. integer 
: [すう, かず]
  1. (n,n-suf) number 2. figure 

平方因子をもたない整数 : ウィキペディア日本語版
平方因子をもたない整数[へいほういんしをもたないせいすう]
数学において、平方因子をもたないあるいは square-free整数 (square-free integer, quadratfrei integer) とは、1 を除くどんな完全平方でも割り切れないような整数である。例えば、10 は square-free だが、18 は 9 = 32 で割り切れるので square-free でない。square-free な正整数は小さい順に
:1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ...
== 同値な特徴づけ ==
正整数 ''n'' が square-free であることと、''n'' の素因数分解においてどの素数も1回よりも多く現れることがないことは同値である。別の言い方をすれば、''n'' の各素因数 ''p'' に対して、素数 ''p'' は  ''n'' / ''p'' を割らない。また別の言い方をすれば、''n'' は square-free であることと、すべての分解 ''n'' = ''ab'' に対して因数 ''a'' と ''b'' が互いに素であることは同値である。この定義から直ちに、すべての素数は square-free である。
正整数 ''n'' が square-free であることと μ(''n'') ≠ 0 は同値である、ただし μ はメビウス関数を表す。
正整数 ''n'' が square-free であることと位数 ''n'' のすべてのアーベル群同型であることは同値であり、それらがすべて巡回群であることとも同値である。このことは有限生成アーベル群の分類から従う。
整数 ''n'' が square-free であることと剰余環 Z / ''n''Z (合同算術参照)がであることは同値である。このことは中国の剰余定理と Z / ''k''Z の形の環が体であることと ''k'' が素数であることが同値であることから従う。
すべての正整数 ''n'' に対して、''n'' のすべての正の約数からなる集合は、整除性で順序を入れることによって半順序集合になる。この半順序集合はつねにである。それがであることと ''n'' が square-free であることは同値である。
はつねに square-free である。整数は自分の根基に等しければ square-free である。'Z合同算術参照)がであることは同値である。このことは中国の剰余定理Z / ''k''Z の形の環が体であることと ''k'' が素数であることが同値であることから従う。
すべての正整数 ''n'' に対して、''n'' のすべての正の約数からなる集合は、整除性で順序を入れることによって半順序集合になる。この半順序集合はつねにである。それがであることと ''n'' が square-free であることは同値である。
はつねに square-free である。整数は自分の根基に等しければ square-free である。
''Z の形の環が体であることと ''k'' が素数であることが同値であることから従う。
すべての正整数 ''n'' に対して、''n'' のすべての正の約数からなる集合は、整除性で順序を入れることによって半順序集合になる。この半順序集合はつねにである。それがであることと ''n'' が square-free であることは同値である。
はつねに square-free である。整数は自分の根基に等しければ square-free である。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「平方因子をもたない整数」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.