|
(n) an ordinal number =========================== ・ 序 : [ついで] 【名詞】 1. (uk) opportunity 2. occasion ・ 序数 : [じょすう] (n) an ordinal number ・ 数 : [すう, かず] 1. (n,n-suf) number 2. figure
数学でいう順序数(じゅんじょすう、)とは、整列集合同士の"長さ"を比較するために、自然数〔本項目では、各自然数が自分自身より小さな自然数全体の集合と等しくなるような仕方で自然数が定義されているものとする。例えば、0 = ∅ , 1 = , 2 = である。〕を拡張させた概念である。 == 定義 == 整列集合 (''A'', <) に対して、''A'' を定義域とする関数 ''G'' を超限再帰によって : ''G''(''a'') = と定義したとき、''G'' の値域 ran(''G'') を (''A'', <) の順序数といい、これを ord(''A'', <) で表す。ある整列集合の順序数であるような集合を順序数と呼ぶ〔順序数は本来、上で述べた定義とは異なる仕方で定義されていた。その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (''A'', <) の "同値類" を (''A'', <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。ところが現代の標準的な集合論においては、''A'' が空集合でない限り (''A'', <) と同型な順序集合全体の集合といったものは存在しないことが示される。したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。ただし、整列集合の順序型と順序数は別のものになる。詳細は「順序型」を参照。〕。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「順序数」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Ordinal number 」があります。 スポンサード リンク
|