翻訳と辞書
Words near each other
・ 斉木洋子
・ 斉木美帆
・ 斉木美香
・ 斉木香
・ 斉木香津
・ 斉東野語
・ 斉桓公
・ 斉橋々
・ 斉橋橋
・ 斉次イデアル
斉次元
・ 斉次函数
・ 斉次多項式
・ 斉次多項式 (代数幾何学)
・ 斉次座標環
・ 斉次式
・ 斉次方程式
・ 斉次線型方程式
・ 斉次関数
・ 斉歯呼


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

斉次元 : ミニ英和和英辞書
斉次元[げん, もと, がん]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [つぎ]
  1. (n,adj-no) (1) next 2. following 3. subsequent 4. (2) stage 5. station 
次元 : [じげん]
 【名詞】 1. dimension 
: [げん, もと, がん]
  1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation 4. (2) former 

斉次元 ( リダイレクト:次数付き環 ) : ウィキペディア日本語版
次数付き環[じすうつきかん]
数学、特に抽象代数学において、次数付き環(じすうつきかん、; 次数付けられた環)あるいは次数環とは R_i R_j \subset R_ を満たすアーベル群 R_i の直和として表すことのできるのことである。多項式環斉次多項式への分解を一般化した概念である。添え字集合は通常非負の整数の集合か整数の集合であるが、任意のモノイドあるいはでもよい。直和分解は通常次数化(gradation)あるいは次数付け(grading)と呼ばれる。
次数(付き)加群(graded module)は同様に定義される(正確な定義は下を見よ)。これはの一般化である。次数付き環でもあるような次数付き加群は次数付き代数(graded algebra)と呼ばれる。次数付き環は次数付き Z-代数と見なすこともできる。
結合性は次数付き環の定義において重要でない(実は全く使われない)。したがってこの概念は非結合的多元環に対しても適用できる。例えば、を考えることができる。
== 基本的な性質 ==
A = \bigoplus_A_i = A_0 \oplus A_1 \oplus A_2 \oplus \cdots を次数付き環とする。
* A_0 は ''A'' の部分環である〔。(とくに、加法の単位元 0 と乗法の単位元 1 は次数 0 の斉次元である。)
* 各 A_iA_0-加群であるネーター環であるのは、A_0 がネーター的かつ ''A'' が A_0 上の多元環として有限生成であるとき、かつそのときに限る。そのような環に対して、生成元を斉次にとることができる。
分解の任意の因子 A_i の元は次数 ''i'' の斉次元(homogeneous elements)と呼ばれる。 イデアルや他の部分集合 \mathfrak ⊂ ''A'' が斉次(せいじ、homogeneous)であるとは次を満たすことである。任意の元 ''a'' ∈ \mathfrak に対して、すべての ''ai'' を斉次元として ''a=a1+a2+...+an'' であるときに、すべての ''ai'' が \mathfrak の元である。与えられた ''a'' に対し、これらの斉次元は一意的に定義され、''a'' の斉次部分(homogeneous parts)と呼ばれる。
''I'' が ''A'' の斉次イデアルであれば、A/I も次数付き環であり、次の分解をもつ。
:A/I = \bigoplus_(A_i + I)/I
任意の(次数付きでない)環 ''A'' は ''A''0 = ''A'' および ''i'' > 0 に対して ''A''''i'' = 0 とすることによって次数付きにできる。これは ''A'' の自明な次数化(trivial gradation)と呼ばれる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「次数付き環」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.