|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 曲 : [きょく, くせ] 【名詞】 1. a habit (often a bad habit, i.e. vice) 2. peculiarity ・ 曲線 : [きょくせん] 【名詞】1. curve
曲線あてはめまたはカーブフィッティング()〔本間 仁,春日屋 伸昌「次元解析・最小二乗法と実験式」コロナ社(1989)〕〔加川 幸雄,霜山 竜一「入門数値解析」朝倉書店(2000)〕〔John R. Taylor、林 茂雄、 馬場 凉「計測における誤差解析入門 」東京化学同人(2000)〕〔吉沢 康和「新しい誤差論―実験データ解析法 」共立出版 (1989/10) 〕は、実験的に得られたデータまたは制約条件に最もよく当てはまるような曲線を求めること。最良あてはめ、曲線回帰とも。一般に内挿や回帰分析を用いる。場合によっては外挿も用いる。回帰分析で曲線を求める場合、その曲線はデータ点を必ず通るわけではなく、曲線とデータ点群の距離が最小になるようにする。曲線あてはめによって得られた曲線を、近似曲線という。特に回帰分析を用いた場合には回帰曲線という。現実の実験データは直線的ではないことが多いため散布図、近似曲線を求める必要性は極めて高いが、統計学の教科書が数多くある中、理論的な解説をした成書が殆どない分野である。 == 一般論 == === 最小二乗法による最適関数の推定 === 我々が考えるべき問題は、実験データを実験を説明する「説明変数」と「目的変数」に分類した上で、説明変数 と、目的変数yの関係 : を求めることである。説明変数としては測定条件を考えることが多く、目的変数としては、測定値を考えることが多い。説明変数、目的変数共にベクトル量である可能性があるが、測定値のほうは、多変数関数の微分が、値域側の成分に関して独立であることからスカラー量としても一般性を失わない。一方、多変数関数の微分は、定義域側の成分については独立でないため、一般論を述べる上ではベクトル量としておかなければならない。以下、測定条件は、k次元ベクトルの形で与えられているとする。成分で表記すると : となる。 実験データは、説明変数に関するデータ と目的変数に関するデータの組、 の形で得られる。また、j番目の測定条件 の第i成分を で表すものとする。 我々が考えるべき問題は、適当な 個のパラメータ と、k+ 変数の関数 を考え、 の値を調整し : ・・・・ (1-1) を最小とするような、 を求める問題に帰着される〔。このSの平方根 のことを、「関数当てはめ時の誤差」という。ここで : のことを、フィッティングパラメータと言う。また、関数Sを考えるときには は、もはや定数ベクトルでしかないことに注意されたい。飽くまで関数Sの変数は である。 尚、Sを定義するにあたり、各データに対して、適当な定数(正または0) によって重みを付け、 : ・・・・ (1-1') のようにすることもある。この方法によって、y方向に誤差(Yエラーバー)がある場合や、「測定回数の異なるデータの平均」の比較が可能であるが、x方向にも誤差(Xエラーバー)がある場合には、対応できない。x方向にも誤差がある場合には、デミングの方法〔を用いる。尚、(1-1)は「(1-1')において、全てのデータの重みづけが等しい状況」を意味することに注意されたい。 我々が考えるべき問題は、、(1-1)あるいは(1-1')の関数Sの極値問題〔島 和久「多変数の微分積分学」近代科学社 (1991/09)〕に他ならない。一般に、極値問題は解を持たない可能性があり、また、解が存在したとして、重解の可能性もあるが、一般論として、以下の定理が知られている。 「もしも、 で、Sが極値をとるとすると、 である。」 この定理は、最適なフィッティングパラメータに対する必要条件を与える。極小値を与えるような の十分条件としては、 「Sの におけるヘッセ行列が正定値(正値, 正定符号)となること」〔 がある。無論、極小値が仮に存在したとして、それらが必ずしも最小であるとは限らない。例えば、最適な が無限遠に存在する可能性もある。 (1-1)のSを最小とするようなフッティングパラメータ が得られた場合には、以下の を、最適関数(xがスカラーの場合には、最適曲線)という。 : (1-2) このgは、説明変数 と目的変数yの間に1つの関数関係を与えている。つまり、このgは、 とyの関数であり、フィッティングパラメータは定数ベクトルと考える。 一般には、「必ず を通る」といった付帯条件が付いている場合がある。このような場合には、ラグランジュの未定乗数法〔が最適なフィッティングパラメータを探る上で手掛かりを与える。 尚、付帯条件のある場合、ない場合共に、実際の数値計算では、Levenberg-Marquardt algorithm(レーベンバーグ・マルカート法)が用いられることが多い。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「曲線あてはめ」の詳細全文を読む スポンサード リンク
|