|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 有 : [う, ゆう] 1. (n,vs) possession ・ 有限 : [ゆうげん] 1. (adj-na,n) finite 2. limited ・ 幾 : [ほとほと] 1. (adv) quite 2. greatly ・ 幾何 : [きか] 【名詞】 1. geometry ・ 何 : [なん] 1. (int,n) what
有限幾何学(ゆうげんきかがく)とは有限個の点から構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「線」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。 ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。 == 概要 == 有限幾何は有限体上の構造と関連したベクトル空間として、線型代数を通じて定義できる。それはガロア幾何とも呼ばれる。または有限幾何は、純粋に組合せ論的に定義することもできる。 多くの場合には(しかしすべてではない)有限幾何はガロア幾何と同じものである。例えば3次元またはそれ以上の次元における任意の有限射影空間は、ある有限体上の射影空間と同型である(有限体上のベクトル空間の射影化)。 そこでこの場合は両者の違いはない。しかし2次元においては、組合せ論的に定義された射影平面で、有限体上の射影空間と同型にならないようなもの、いわゆる非デザルグ平面が存在する。そこでこの場合は両者は異なるものである。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「有限幾何学」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Finite geometry 」があります。 スポンサード リンク
|