|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 松 : [まつ] 【名詞】 1. (1) pine tree 2. (2) highest (of a three-tier ranking system) ・ 本 : [ほん, もと] 1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation
松本 眞(まつもと まこと、1965年 - )は日本の数学者。広島大学大学院理学研究科教授。専門は疑似乱数、数論幾何、組合せ数学、位相幾何学。優れた疑似乱数生成法であるメルセンヌ・ツイスタを考案したことで知られる。 == 略歴 == 麻布高等学校卒〔http://www.math.sci.hiroshima-u.ac.jp/~m-mat/PROFILE-RESEARCH/public040301.pdf〕(1983年)。東京大学理学部情報科学科卒(1987年)。東京大学大学院理学系研究科修士課程(情報科学専攻)(1989年)。 東京大学大学院理学系研究科第一種博士課程(数学専攻)進学。1990年同中途退学。1990年京都大学数理解析研究所助手。1995年 京都大学 博士(理学)。論文の題は「Galois representations on profinite braid groups on curves (曲線上のプロファイナイト組紐群へのガロア表現)」〔博士論文書誌データベースによる〕。同年慶応大学理工学部専任講師。 1998年慶応大学理工学部助教授。1999年九州大学大学院数理学研究科助教授。2000年3月 東京大学 博士(工学)。 論文の題は「Random number generators by M-sequences with high-dimensional equidistribution property,and their dynamic creation (M系列を用いた高次元均等分布性を持つ乱数の発生法とその動的生成)」〔。 2000年京都大学総合人間学部助教授。2003年広島大学大学院理学研究科教授。2010年から2013年3月まで東京大学大学院数理科学研究科教授。2013年4月より現職。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「松本眞」の詳細全文を読む スポンサード リンク
|