翻訳と辞書
Words near each other
・ 消費者行政推進会議
・ 消費者運動
・ 消費者金融
・ 消費者金融カード
・ 消費者関係
・ 消費者関連専門家会議
・ 消費者需要
・ 消費財
・ 消費貸借
・ 消費貸借契約
消費資本資産価格モデル
・ 消費都市
・ 消費量
・ 消費関数
・ 消費電力
・ 消費革命
・ 消退
・ 消退出血(子宮の)
・ 消退期捻発音
・ 消長


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

消費資本資産価格モデル : ミニ英和和英辞書
消費資本資産価格モデル[しょうひ]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

消費 : [しょうひ]
  1. (n,vs) consumption 2. expenditure 
: [ひ]
  1. (n-suf) cost 2. expense 
資本 : [しほん]
 【名詞】 1. funds 2. capital 
: [ほん, もと]
  1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation 
資産 : [しさん]
 【名詞】 1. property 2. fortune 3. means 4. assets 
: [うぶ]
  1. (adj-no) innocent 2. naive 3. unsophisticated 4. inexperienced 5. green 6. wet behind the ears
: [あたい]
  1. (n,adj-no,vs) (1) (gen) (comp) value 2. price 3. cost 4. worth 5. merit 6. (2) variable (computer programming, programing)
価格 : [かかく]
 【名詞】 1. price 2. value 3. cost 
: [かく]
  1. (n,n-suf) status 2. character 3. case 

消費資本資産価格モデル ( リダイレクト:消費CAPM ) : ウィキペディア日本語版
消費CAPM[かく]
消費CAPM(しょうひキャップエム、)とは金融経済学マクロ経済学における資産価格モデルの一つ。CCAPMとも呼ばれる。効用最大化問題の解としての性質を持ち、消費金融資産の価格との関係が明示化されているという特徴がある。経済学の理論的には妥当なモデルであるが、標準的なモデルでは実証パフォーマンスが悪いことが知られている。
== 概要 ==
金融市場は完全市場であり、代表的個人で表される消費者の期待効用関数は時間について加法分離的であると仮定する。この時、消費CAPMの下では次の方程式で任意の金融資産 i の価格 p_ が決定する。
:p_ = E_t\left
ただし、d_t+1 時点で金融資産 i を保持していることによって得られる利益(株式なら配当債券ならクーポンなど)であり、c_t は消費額、u は効用関数で u^\prime はその1階微分、\beta は効用の主観的割引率、E_t は時点 t までの情報による期待値となる。上述の式は以下の期待効用最大化問題において最適な消費が満たすべきオイラー・ラグランジュ方程式となる。
:\max_ E_0\leftu(c_t)\right
:\mboxc_t + \sum_^n p_q_ \leq y_t + \sum_^n (p_ + d_)q_
ただし、y_t は時点 t における労働所得などの金融市場外からの所得であり、q_ は時点 t における金融資産 i の保有量である。効用関数が時間についての加法分離的とは、t 時点での消費の効用への寄与が関数 u を用いて、u(c_t) で表され、他の時点の消費に依存しないことを意味する。
:m_ := \beta\frac
確率的割引ファクター()と呼ばれる〔。消費CAPMにおける確率的割引ファクターは異時点間の消費の限界代替率を表している。確率的割引ファクターを用いて消費CAPMの方程式を表現すると、
:p_ = E_t\left
となる。ここで、t+1 時点における金融資産 i のトータルリターンを R_ = \frac 、安全利子率を r_ とすれば、消費CAPMより
:E_t - r_ = -(1+r_)\mathrm_t(m_,R_)
が成り立つ。また市場ポートフォリオのトータルリターンを R_ とすれば、
:E_t - r_ = \frac\Big(E_t - r_\Big)
も成り立ち、CAPMと似た関数形で表現できる。もし、確率的割引ファクターと市場ポートフォリオのトータルリターンの相関係数が1もしくは-1ならばこの式はCAPMと同じになる。
特に効用関数 uCRRA型効用関数を想定する場合が多い。その際、相対的リスク回避度を \gamma とすると、確率的割引ファクターは
:m_ = \beta\left(\frac\right)^
となる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「消費CAPM」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.