|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 生 : [せい, なま] 1. (adj-na,n,adj-no) (1) draft (beer) 2. draught 3. (2) raw 4. unprocessed ・ 生物 : [せいぶつ, なまもの] 【名詞】 1. raw food 2. perishables ・ 物 : [もの] 【名詞】 1. thing 2. object ・ 数 : [すう, かず] 1. (n,n-suf) number 2. figure ・ 数学 : [すうがく] 【名詞】 1. mathematics 2. arithmetic ・ 学 : [がく] 【名詞】 1. learning 2. scholarship 3. erudition 4. knowledge
数理理論生物学(すうりりろんせいぶつがく、mathematical and theoretical biology)とは、生物学、バイオテクノロジーおよび医学にまたがる学際的な研究分野の一つである。 数理生物学(すうりせいぶつがく、mathematical biology)、または生物数学(せいぶつすうがく、biomathematics)と呼ばれることもあり、その場合は、数学的側面を強調している。また、理論生物学(理論生物学、theoretical biology)と呼ばれることもあり、その場合には、生物学的側面を強調している。 少なくとも4つの主要な亜領域、生物数学モデリング(biological mathematical modeling)、複雑システムバイオロジー(relational biology/complex systems biology(CBS))、バイオインフォマティクス(bioinformatics)、および計算機数学モデリング(computational biomodeling/biocomputing)を含む。 ==概説== 数理生物学は、生物学的過程の数学的表現、処理、モデル化を目的とし、様々な応用数学の技術と道具を活用する。生物学、医学生物学およびバイオテクノロジーの研究において、理論的な面でも実用的な面でも用いられる。 例を挙げると、細胞生物学においては、タンパク質間相互作用システムをイラスト("cartoon")で表現することがよくある。このように表現することで、容易に視覚化することができているが、研究対象のシステムを厳密に説明しているというわけではない。厳密に表現しようとするならば、正確な数学的なモデルが必要となる。システムを量的に表現することにより、システムの挙動をシミュレーションする方が適切であるかもしれないし、システムを観察のみからでは予想できない性質を予測することが可能になる可能性もある。 生物学に応用されている数学分野には次のようなものがある。微分積分学(calculus)、確率論(probability theory)、統計学(statistics)、線形代数学(linear algebra)、抽象代数学(abstract algebra)、グラフ理論(graph theory)、組合せ論(combinatorics)、代数幾何学(algebraic geometry)、位相幾何学(topology)、力学系(dynamical systems)、微分方程式論(differential equations)、符号理論(coding theory)。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「数理生物学」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Mathematical and theoretical biology 」があります。 スポンサード リンク
|