|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 確 : [たしか] 1. (adj-na,adv,exp,n) certain 2. sure 3. definite 4. if I'm not mistaken 5. if I remember correctly ・ 確証 : [かくしょう] (n) positive proof ・ 証 : [あかし, しょう] (n) 1. proof 2. evidence ・ 原 : [はら, もと] 1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation ・ 原理 : [げんり] 【名詞】 1. principle 2. theory 3. fundamental truth ・ 理 : [り] 【名詞】 1. reason
帰納(きのう、、)とは、個別的・特殊的な事例から一般的・普遍的な規則・法則を見出そうとする論理的推論の方法のこと。演繹においては前提が真であれば結論も必然的に真であるが、帰納においては前提が真であるからといって結論が真であることは保証されない。 なお数学的帰納法・構造的帰納法・整礎帰納法・完全帰納法・累積帰納法・超限帰納法などの帰納法は、名前と違い帰納ではなく演繹である。 == 帰納とは == 一般的にいって帰納は、あくまでも確率・確度といった蓋然性の導出に留まる。例えば、「ネコaはネズミを追いかける」「ネコbはネズミを追いかける」「ネコcはネズミを追いかける」という事例が幾つかあるので、「全てのネコはネズミを追いかける」と結論を下すとしよう。ここでは、自分が見たネコだけから「全てのネコ」という全称命題に範囲を飛躍させている。しかし、この先新たにネズミを追いかけない猫が発見される可能性は常にある。したがって、「全てのネコはネズミを追いかける」と定式化することには疑問が残る。 また、次のような例でも同様のことが言える。地上で太陽を観測し、三日かけて次の観測事実を得たとする。「一昨日も、昨日も、今日も、太陽は東の高い山の脇から上ってきた」。ここから次のように結論するのが枚挙的帰納法である。「太陽はいつも、東の高い山の脇から上る」。 演繹で用いられている例と帰納を対比させるとこうなる。「人であるソクラテスは死んだ。人であるプラトンは死んだ。人であるアリストテレスは死んだ。したがって人は全て死ぬ」。つまり、帰納は一般化に基づく。 一般的にいえば、帰納とは何かしらの知的判断能力を有する生物が行動学習をする際の根本的な原理を定式化したものである。フランシス・ベーコンの提出したこの帰納という概念をより人間学的に咀嚼したものが、ジョン・ロックの経験論である。 データから理論を導き出す試み、すなわち帰納的推理はベーコンらによって始められ、ジョン・スチュアート・ミルの『論理学体系』においてある程度体系化され、その後近代論理学や統計学と結びついて研究されている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「帰納」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Inductive reasoning 」があります。 スポンサード リンク
|