翻訳と辞書
Words near each other
・ 立方ミリ
・ 立方ミリメートル
・ 立方メガメートル
・ 立方メートル
・ 立方ヤード
・ 立方上皮
・ 立方上皮がん
・ 立方上皮癌
・ 立方体
・ 立方体グラフ
立方体倍積問題
・ 立方体数
・ 立方体様
・ 立方倍積問題
・ 立方八面体
・ 立方八面切頂立方八面体
・ 立方切頂立方八面体
・ 立方半八面体
・ 立方和
・ 立方数


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

立方体倍積問題 : ミニ英和和英辞書
立方体倍積問題[りっぽうたいばいせきもんだい]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

立方 : [りっぽう]
 (n,vs) cube
立方体 : [りっぽうたい]
 (n) cube
: [ほう]
  1. (n-adv,n) side 2. direction 3. way 
: [ばい]
  1. (n,vi,vs,vt) twice 2. times 3. -fold 4. double 5. doubled 6. increase 
: [せき]
 【名詞】 1. (gen) (math) product 
: [もん]
 【名詞】 1. problem 2. question 
問題 : [もんだい]
 【名詞】 1. problem 2. question 
: [だい]
  1. (n,vs) title 2. subject 3. theme 4. topic 

立方体倍積問題 : ウィキペディア日本語版
立方体倍積問題[りっぽうたいばいせきもんだい]
立方体倍積問題(りっぽうたいばいせきもんだい)は、三大作図問題の1つである。古代エジプト人、ギリシア人、インド人にも知られていた〔Lucye Guilbeau (1930). "The History of the Solution of the Cubic Equation", ''Mathematics News Letter'' 5 (4), pp. 8–12.〕。
立方体倍積問題とは、一辺の長さがs、体積がV= s3のある立方体に対し、体積が2V、つまり一辺の長さがs\cdot\sqrtの立方体を与える問題である。この問題は、\sqrt ≈ 1.25992105が作図可能数ではないため、定規とコンパスだけでは作図が不可能であることが知られている。
==歴史==
アポローンによってもたらされた疾病を鎮める方法を知るためにデルフォイの神託を求めたデロス島の市民の故事から〔L. Zhmud ''The origin of the history of science in classical antiquity'', p.84 , quoting Plutarch and Theon of Smyrna〕、「デロス島の問題」(Delian problem)とも呼ばれる。プルタルコスによると〔 Plutarch, De E apud Delphos 386.E.4〕、島内の政治問題の解決法を探していたデロス市民が、デルフォイの神託を求めたとされている。神託は、立方体の形状をしたアポローンの祭壇の大きさを2倍にせよと告げた。デロス市民は、この答えを奇妙に感じ、プラトンに相談した。プラトンはこの神託を、与えられた立方体の体積を2倍する数学的問題と解釈し、アポローンがデロス市民に幾何学や数学を勉強させることで、その熱情を鎮めようとしていると説明した〔Plutarch, De genio Socratis 579.B〕。
プルタルコスによると、プラトンはエウドクソスアルキタスメナケムスにこの問題を出題した。メナケムスは、機械的手段でこの問題を解いたが、プラトンから、純粋に数学的な方法で解決していないと非難された (Plut., Quaestiones convivales VIII.ii, 718ef)。これが、紀元前350年代の『シシュポス』の中で、この問題が未解決問題として引用された原因かもしれない〔Carl Werner Müller, ''Die Kurzdialoge der Appendix Platonica'', Munich: Wilhelm Fink, 1975, pp. 105-106〕。
この問題の解決の模索の大きな進歩は、ヒポクラテスが、この問題は、ある線分と2倍の長さの別の線分の2つの比例中項を求める問題と等価であると発見したことだった〔T.L. Heath ''A history of Greek mathematics'', Vol. 1]〕。近代風に言うと、長さaと2aの与えられた線分において、立方体の複製は次を満たす長さrとsの線分を見つけることと等価である。
:a:r=r:s=s:2a.\
1837年に、ピエール・ヴァンツェルにより、2の立方根は作図可能数ではない、すなわち定規とコンパスによる作図は不可能であることが発見された。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「立方体倍積問題」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.