|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 複 : [ふく] 1. (n,pref) double 2. compound ・ 素 : [もと] 1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation ・ 共 : [ども] 1. (suf) indicates plural - humble referring to oneself, disdainful referring to others ・ 共軛 : [きょうやく] (n) (gen) (math) conjugation
数学において、複素数の複素共役、複素共軛(ふくそきょうやく、)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、''i'' を虚数単位として、複素数 ''z'' を ''a'', ''b'' を実数として : と表したとき、 : が ''z'' の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (''z'' *) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。 == 性質 == * が実数 ⇔ * が純虚数 ⇔ * (対合) * * * * *:特に * * * 。 特に、複素数 ''z'' が実数係数の多項式 ''f''(''x'') の根となるならば ''z'' の共役複素数 ''z'' も ''f''(''x'') の根となることがわかる(1746年:ダランベール)。すなわち、''f''(''x'') が実数係数多項式ならば : が成り立つ。 より一般的に、実軸(またはその開集合)上の実数値をとる実解析的関数について、その解析接続は複素共役な複素数に対して複素共役な値を与える。たとえば複素解析において : : (ただし実軸のある領域上で実数値をとる分枝の、複素共役について対称的な領域への拡張について) という性質がなりたつ。 また、定義よりあきらかに''z''とその複素共役のみで''z''の実部と虚部、または極形式であらわされた複素数の絶対値と偏角をあらわすことができる。 * * * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「複素共役」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Complex conjugate 」があります。 スポンサード リンク
|