|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 複 : [ふく] 1. (n,pref) double 2. compound ・ 素 : [もと] 1. (n,n-suf,n-t) (1) origin 2. basis 3. foundation ・ 微分 : [びぶん] (n,vs) differential (e.g., calculus) ・ 分 : [ぶん, ふん] 1. (n,n-suf,pref) (1) part 2. segment 3. share 4. ration 5. (2) rate 6. (3) degree 7. one's lot 8. one's status 9. relation 10. duty 1 1. kind 12. lot 13. (4) in proportion to 14. just as much as 1 ・ 形 : [けい, かたち, ぎょう] 1. (suf) shape 2. form 3. type ・ 形式 : [けいしき] 【名詞】 1. (1) form 2. formality 3. format 4. (2) appearance 5. mode 6. (3) math expression ・ 式 : [しき] 1. (n,n-suf) (1) equation 2. formula 3. expression 4. (2) ceremony 5. (3) style
数学では、複素微分形式(complex differential form)は、複素数係数を持つ多様体(通常は複素多様体)上の微分形式である。 複素微分形式は、微分幾何学において広く応用されている。複素多様体上での代数幾何学やケーラー幾何学やホッジ理論の多くで、複素微分形式は重要な基本としなっている。複素多様体でない場合でも、複素微分方程式は概複素構造やスピノルの理論やCR構造の研究で重要な役割を果たしている。 典型的には、複素微分形式は容易に期待される分解を持つ考えられている。たとえば、複素多様体上では、任意の k-形式が一意に (p,q)-形式に分解する。(p,q)-形式とは、大まかには、正則座標の p 個の外微分と、その複素共役の q 個の外微分のウェッジ積である。(p,q)-形式の集合は、基本的研究対象であり、k-形式以上に、多様体の幾何学的構造をよりよく反映定する。たとえば、ホッジ理論が適用可能な場合は、(k-形式よりも)良い多様体の構造が存在する。 ==複素多様体上の微分形式== M が複素多様体であるとすると、n 個の複素変数函数 z1,...,zn からなる局所座標変換が存在し、ある点の近傍から別の点の近傍への座標変換が複数の変数 zi の正則函数となる。複素微分形式の空間は、豊かな構造を持っていて、基本的には、座標変換の函数が滑らか(smooth)であることよりも正則であることに依存している。
|