|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 超 : [ちょう] 1. (n,n-suf,pref) super- 2. ultra- 3. hyper- ・ 流 : [りゅう] 1. (n,n-suf) style of 2. method of 3. manner of 4. school (of thought) ・ 流動 : [りゅうどう] 1. (n,vs) flow ・ 動 : [どう] 【名詞】 1. motion 2. change 3. confusion ・ 状 : [じょう] 1. (n,n-suf) shape ・ 状態 : [じょうたい] 【名詞】 1. current status 2. condition 3. situation 4. circumstances 5. state ・ 態 : [たい, ざま] 【名詞】 1. plight 2. state 3. appearance
超流動(英語:superfluidity)とは、極低温において液体ヘリウムの流動性が高まり、容器の壁面をつたって外へ溢れ出たり、原子一個が通れる程度の隙間に浸透したりする現象で、量子効果が巨視的に現れたものである。1937年、ヘリウム4が超流動性を示すことをピョートル・カピッツァが発見した。 == ヘリウム4の場合 == ヘリウム4は、零点振動の効果により低温で液化しても、絶対零度に到るまで液体のままで存在する。つまり、固体にはならない。そして、2.17K(ケルビン)で比熱の跳びがあり、二次の相転移を起こし超流動の状態となる。この転移温度のことを比熱の跳びの形からλ点という。 超流動状態では、ヘリウム4は粘性が0の状態(He II相)になっており、壁を登っていったり、原子一個が通れる隙間さえあればそこから漏れ出す。ただ、有限温度の領域では常流体(普通の液体としての性質を示す:He I相)と超流体(粘性ゼロ:He II相)が共存している(→二流体理論)。超流体の状態では、ボース粒子であるヘリウム4がボース凝縮している。 超流体部分がボース凝縮しているのではないかということは、1938年、フリッツ・ロンドンによって最初に指摘された。ロンドンは、ヘリウム4原子を理想ボース気体とみなして、超流動の転移温度をボース凝縮温度とし、その理論値3.13Kを導いた。この値は実験観測値2.17Kに近い値と言える。値のずれは、超流動状態にあるヘリウム4は液体状態であり、理想ボース気体とは異なる状態であること、ヘリウム原子間の相互作用、原子同士が接近したときに働く強い斥力の影響などによる。理想ボース気体では、粒子間の相互作用を考慮していないが、その後、相互作用のある場合への理論的な拡張が行われている。ただ、理想ボース気体でのボース凝縮状態への相転移は三次の相転移であるが、ヘリウム4(ヘリウム3も同様)の超流動への転移は二次の相転移である。この部分に対する理論面からの解釈はまだ十分なされていない。 また、超流動状態では非常に高い熱の伝導性を示す。これは、熱源に対してヘリウム4のうちの超流動成分が近づくように、常流動成分が遠ざかるように運動するためである(一種の対流であると言える)。この高い熱伝導性により、超流動ヘリウムは全体が熱的に非常に均一になっている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「超流動」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Superfluidity 」があります。 スポンサード リンク
|